Huai-Ling Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1872616/publications.pdf

Version: 2024-02-01

206112 172457 4,414 47 29 48 citations h-index g-index papers 51 51 51 6473 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Doubleâ€Layer Nacreâ€Inspired Polyimideâ€Mica Nanocomposite Films with Excellent Mechanical Stability for LEO Environmental Conditions. Advanced Materials, 2022, 34, e2105299.	21.0	56
2	Radially Porous Nanocomposite Scaffolds with Enhanced Capability for Guiding Bone Regeneration In Vivo. Advanced Functional Materials, 2022, 32, .	14.9	36
3	Antiâ€Swelling, Robust, and Adhesive Extracellular Matrixâ€Mimicking Hydrogel Used as Intraoral Dressing. Advanced Materials, 2022, 34, e2200115.	21.0	61
4	Biomimetic discontinuous Bouligand structural design enables high-performance nanocomposites. Matter, 2022, 5, 1563-1577.	10.0	27
5	Nacreous aramid-mica bulk materials with excellent mechanical properties and environmental stability. IScience, 2021, 24, 101971.	4.1	15
6	A Highly Compressible and Stretchable Carbon Spring for Smart Vibration and Magnetism Sensors. Advanced Materials, 2021, 33, e2102724.	21.0	51
7	Biomimetic Lamellar Chitosan Scaffold for Soft Gingival Tissue Regeneration. Advanced Functional Materials, 2021, 31, 2105348.	14.9	28
8	A Highly Compressible and Stretchable Carbon Spring for Smart Vibration and Magnetism Sensors (Adv. Mater. 39/2021). Advanced Materials, 2021, 33, 2170308.	21.0	0
9	Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. National Science Review, 2020, 7, 73-83.	9.5	60
10	Temperatureâ€Invariant Superelastic and Fatigue Resistant Carbon Nanofiber Aerogels. Advanced Materials, 2020, 32, e1904331.	21.0	92
11	Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano Research, 2020, 13, 2879-2884.	10.4	27
12	Regulating silver nanowire size enables efficient photoelectric conversion. Science China Chemistry, 2020, 63, 1046-1052.	8.2	4
13	Activating proper inflammation for wound-healing acceleration via mesoporous silica nanoparticle tissue adhesive. Nano Research, 2020, 13, 373-379.	10.4	27
14	Superior Biomimetic Nacreous Bulk Nanocomposites by a Multiscale Soft-Rigid Dual-Network Interfacial Design Strategy. Matter, 2019, 1, 412-427.	10.0	81
15	Multifunctional Bilayer Nanocomposite Guided Bone Regeneration Membrane. Matter, 2019, 1, 770-781.	10.0	58
16	Bioâ€Inspired Synthesis of Hematite Mesocrystals by Using Xonotlite Nanowires as Growth Modifiers and Their Improved Oxygen Evolution Activity. ChemSusChem, 2019, 12, 3747-3752.	6.8	6
17	Bioinspired Unidirectional Silk Fibroin–Silver Compound Nanowire Composite Scaffold via Interfaceâ€Mediated In Situ Synthesis. Angewandte Chemie - International Edition, 2019, 58, 14152-14156.	13.8	19
18	Bioinspired Unidirectional Silk Fibroin–Silver Compound Nanowire Composite Scaffold via Interfaceâ€Mediated In Situ Synthesis. Angewandte Chemie, 2019, 131, 14290-14294.	2.0	7

#	Article	IF	CITATIONS
19	Rücktitelbild: Bioinspired Unidirectional Silk Fibroin–Silver Compound Nanowire Composite Scaffold via Interfaceâ€Mediated In Situ Synthesis (Angew. Chem. 40/2019). Angewandte Chemie, 2019, 131, 14528-14528.	2.0	2
20	Biomimetic Carbon Tube Aerogel Enables Super-Elasticity and Thermal Insulation. CheM, 2019, 5, 1871-1882.	11.7	136
21	A Bioinspired Interface Design for Improving the Strength and Electrical Conductivity of Grapheneâ€Based Fibers. Advanced Materials, 2018, 30, e1706435.	21.0	138
22	Charged Nanowire-Directed Growth of Amorphous Calcium Carbonate Nanosheets in a Mixed Solvent for Biomimetic Composite Films. Langmuir, 2018, 34, 5813-5820.	3.5	2
23	Strong and stiff Ag nanowire-chitosan composite films reinforced by Ag–S covalent bonds. Nano Research, 2018, 11, 410-419.	10.4	29
24	Transforming ground mica into high-performance biomimetic polymeric mica film. Nature Communications, 2018, 9, 2974.	12.8	107
25	Biomimetic twisted plywood structural materials. National Science Review, 2018, 5, 703-714.	9.5	79
26	Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nature Communications, 2018, 9, 2786.	12.8	195
27	Bioinspired polymeric woods. Science Advances, 2018, 4, eaat7223.	10.3	219
28	Bio-inspired clay nanosheets/polymer matrix/mineral nanofibers ternary composite films with optimal balance of strength and toughness. Science China Materials, 2017, 60, 909-917.	6.3	12
29	Mass production of bulk artificial nacre with excellent mechanical properties. Nature Communications, 2017, 8, 287.	12.8	293
30	Preventing structural aging with synthetic tooth enamel. Science China Materials, 2017, 60, 683-684.	6.3	1
31	Synthetic nacre by predesigned matrix-directed mineralization. Science, 2016, 354, 107-110.	12.6	706
32	Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nature Communications, 2016, 7, 12920.	12.8	344
33	Charged Inorganic Nanowireâ€Directed Mineralization of Amorphous Calcium Carbonate. ChemNanoMat, 2016, 2, 259-263.	2.8	7
34	Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. Nanoscale, 2016, 8, 1684-1690.	5.6	36
35	Chitosan microspheres with an extracellular matrix-mimicking nanofibrous structure as cell-carrier building blocks for bottom-up cartilage tissue engineering. Nanoscale, 2016, 8, 309-317.	5.6	58
36	Cobalt diselenide nanobelts grafted on carbon fiber felt: an efficient and robust 3D cathode for hydrogen production. Chemical Science, 2015, 6, 4594-4598.	7.4	114

#	Article	IF	Citations
37	A shape-memory scaffold for macroscale assembly of functional nanoscale building blocks. Materials Horizons, 2014, 1, 69-73.	12.2	55
38	Macroscopic Freeâ€Standing Hierarchical 3D Architectures Assembled from Silver Nanowires by Ice Templating. Angewandte Chemie - International Edition, 2014, 53, 4561-4566.	13.8	184
39	Threeâ€Dimensional Heteroatomâ€Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors. Advanced Functional Materials, 2014, 24, 5104-5111.	14.9	535
40	MnO Nanocrystals: A Platform for Integration of MRI and Genuine Autophagy Induction for Chemotherapy. Advanced Functional Materials, 2013, 23, 1534-1546.	14.9	75
41	Stretchable Conductors Based on Silver Nanowires: Improved Performance through a Binary Network Design. Angewandte Chemie - International Edition, 2013, 52, 1654-1659.	13.8	182
42	Synthesis of Mesoporous Calcium Phosphate Microspheres by Chemical Transformation Process: Their Stability and Encapsulation of Carboxymethyl Chitosan. Crystal Growth and Design, 2013, 13, 3201-3207.	3.0	30
43	PEGylated Upconverting Luminescent Hollow Nanospheres for Drug Delivery and In Vivo Imaging. Small, 2013, 9, 3235-3241.	10.0	49
44	Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications. Scientific Reports, 2013, 3, 2994.	3.3	42
45	Synthesis of Tunable Theranostic Fe ₃ O ₄ @Mesoporous Silica Nanospheres for Biomedical Applications. Advanced Healthcare Materials, 2012, 1, 327-331.	7.6	16
46	Gene Delivery: Synthesis of Tunable Theranostic Fe3O4@Mesoporous Silica Nanospheres for Biomedical Applications (Adv. Healthcare Mater. 3/2012). Advanced Healthcare Materials, 2012, 1, 326-326.	7.6	0
47	An investigation of zirconium(iv)–glycine(CP-2) hybrid complex in bovine serum albumin protein matrix under varying conditions. Journal of Materials Chemistry, 2011, 21, 19005.	6.7	7