Mario Esparza-Soto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1872437/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Photo-electrooxidation treatment of Acetaminophen in aqueous solution using BDD-Fe and BDD-Cu systems. Environmental Technology (United Kingdom), 2022, 43, 1189-1199.	2.2	7
2	Photolysis and heterogeneous solar photo-Fenton for slaughterhouse wastewater treatment using an electrochemically modified zeolite as catalyst. Separation Science and Technology, 2022, 57, 822-841.	2.5	7
3	Decision Making Model for Municipal Wastewater Conventional Secondary Treatment with Bayesian Networks. Water (Switzerland), 2022, 14, 1231.	2.7	1
4	Oxidation of N-acetyl-para-aminophenol (acetaminophen) by a galvanic Fenton and solar galvanic Fenton processes. Solar Energy, 2020, 199, 731-741.	6.1	9
5	Biodegradability index enhancement of landfill leachates using a Solar Galvanic-Fenton and Galvanic-Fenton system coupled to an anaerobic–aerobic bioreactor. Solar Energy, 2019, 188, 989-1001.	6.1	16
6	Anaerobic treatment of chocolate-processing industry wastewater at different organic loading rates and temperatures. Water Science and Technology, 2019, 79, 2251-2259.	2.5	8
7	TRATAMIENTO DE UN AGUA RESIDUAL INDUSTRIAL A TEMPERATURA PSICROFÃLICA CON UN REACTOR UASB. Revista Internacional De Contaminacion Ambiental, 2019, 35, 905-915.	0.4	2
8	Peroxicoagulation and Solar Peroxicoagulation for Landfill Leachate Treatment Using a Cu–Fe System. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	9
9	Activated sludge with low solids production: modified ASM1 modeling and simulation. Desalination and Water Treatment, 2014, , 1-12.	1.0	1
10	Treatment of a chocolate industry wastewater in a pilot-scale low-temperature UASB reactor operated at short hydraulic and sludge retention time. Water Science and Technology, 2013, 67, 1353-1361.	2.5	12
11	Tracer test and hydraulics modeling of a large WWTP. Water Practice and Technology, 2012, 7, .	2.0	1
12	Initial-rate based method for estimating the maximum heterotrophic growth rate parameter (μHmax). Bioresource Technology, 2012, 116, 126-132.	9.6	6
13	Spectrometric characterization of effluent organic matter of a sequencing batch reactor operated at three sludge retention times. Water Research, 2011, 45, 6555-6563.	11.3	55
14	Anaerobic treatment of a medium strength industrial wastewater at low-temperature and short hydraulic retention time: a pilot-scale experience. Water Science and Technology, 2011, 64, 1629-1635.	2.5	14
15	Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuousâ€flow photobioreactors. Environmental Technology (United Kingdom), 2010, 31, 523-532.	2.2	63
16	Full activated sludge model no. 1 calibration experience at a medium-size WWTP in Mexico. Water Science and Technology, 2009, 60, 3069-3082.	2.5	8
17	Occurrence and removal of dissolved organic nitrogen in US water treatment plants. Journal - American Water Works Association, 2006, 98, 102-110.	0.3	69
18	Transformation of Molecular Weight Distributions of Dissolved Organic Carbon and UV-Absorbing Compounds at Full-Scale Wastewater-Treatment Plants. Water Environment Research, 2006, 78, 253-262.	2.7	14

MARIO ESPARZA-SOTO

#	Article	IF	CITATIONS
19	Comparison of Dissolved-Organic-Carbon Residuals from Air- and Pure-Oxygen-Activated-Sludge Sequencing-Batch Reactors. Water Environment Research, 2006, 78, 321-329.	2.7	4
20	Characteristics and Reactivity of Algae-Produced Dissolved Organic Carbon. Journal of Environmental Engineering, ASCE, 2005, 131, 1574-1582.	1.4	219
21	Biosorption of humic and fulvic acids to live activated sludge biomass. Water Research, 2003, 37, 2301-2310.	11.3	121
22	HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Research, 2003, 37, 3530-3537.	11.3	268
23	Fluorescence Analysis of a Standard Fulvic Acid and Tertiary Treated Wastewater. Journal of Environmental Quality, 2001, 30, 2037-2046.	2.0	111