
Ahmad S Alshammari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1872349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 2017, 358, 326-332.	6.0	604
2	Plasmon-Enhanced Photocatalytic CO ₂ Conversion within Metal–Organic Frameworks under Visible Light. Journal of the American Chemical Society, 2017, 139, 356-362.	6.6	511
3	Weaving of organic threads into a crystalline covalent organic framework. Science, 2016, 351, 365-369.	6.0	427
4	Visible-light photocatalysis on C-doped ZnO derived from polymer-assisted pyrolysis. RSC Advances, 2015, 5, 27690-27698.	1.7	158
5	Production of Silver Nanoparticles with Strong and Stable Antimicrobial Activity against Highly Pathogenic and Multidrug Resistant Bacteria. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	157
6	Calcium <scp>l</scp> -Lactate Frameworks as Naturally Degradable Carriers for Pesticides. Journal of the American Chemical Society, 2017, 139, 8118-8121.	6.6	119
7	Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Research Letters, 2013, 8, 516.	3.1	100
8	Cobalt-based nanoparticles prepared from MOF–carbon templates as efficient hydrogenation catalysts. Chemical Science, 2018, 9, 8553-8560.	3.7	87
9	Molecular Retrofitting Adapts a Metal–Organic Framework to Extreme Pressure. ACS Central Science, 2017, 3, 662-667.	5.3	79
10	Bimetallic Catalysts Containing Gold and Palladium for Environmentally Important Reactions. Catalysts, 2016, 6, 97.	1.6	54
11	Cobalt-Nanoparticles Catalyzed Efficient and Selective Hydrogenation of Aromatic Hydrocarbons. ACS Catalysis, 2019, 9, 8581-8591.	5.5	52
12	Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids. Electrochemistry Communications, 2014, 46, 103-106.	2.3	50
13	Levulinic Acid Derived Reusable Cobalt-Nanoparticles-Catalyzed Sustainable Synthesis of Î ³ -Valerolactone. ACS Sustainable Chemistry and Engineering, 2019, 7, 14756-14764.	3.2	42
14	Significant Formation of Adipic Acid by Direct Oxidation of Cyclohexane Using Supported Nanoâ€Gold Catalysts. ChemCatChem, 2012, 4, 1330-1336.	1.8	33
15	Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes. Journal of Catalysis, 2019, 370, 372-377.	3.1	30
16	Scalable preparation of stable and reusable silica supported palladium nanoparticles as catalysts for N-alkylation of amines with alcohols. Journal of Catalysis, 2020, 382, 141-149.	3.1	30
17	Heterogeneous Gold Catalysis: From Discovery to Applications. Catalysts, 2019, 9, 402.	1.6	29
18	Two-step synthesis of dimethyl carbonate from urea, ethylene glycol and methanol using acid–base bifunctional zinc-yttrium oxides. Fuel Processing Technology, 2014, 126, 359-365.	3.7	28

AHMAD S ALSHAMMARI

#	Article	IF	CITATIONS
19	Catalytic alcoholysis of urea to diethyl carbonate over calcined Mg–Zn–Al hydrotalcite. RSC Advances, 2015, 5, 19534-19540.	1.7	23
20	Highly selective and stable electro-catalytic system with ionic liquids for the reduction of carbon dioxide to carbon monoxide. Electrochemistry Communications, 2015, 55, 43-46.	2.3	22
21	Reductive Amination, Hydrogenation and Hydrodeoxygenation of 5â€Hydroxymethylfurfural using Silicaâ€supported Cobalt―Nanoparticles. ChemCatChem, 2022, 14, .	1.8	19
22	Binary Mg–Fe oxide as a highly active and magnetically separable catalyst for the synthesis of ethyl methyl carbonate. RSC Advances, 2015, 5, 25849-25856.	1.7	13
23	Potential of Supported Gold Bimetallic Catalysts for Green Synthesis of Adipic Acid from Cyclohexane. Topics in Catalysis, 2015, 58, 1069-1076.	1.3	13
24	Photodegradation of rhodamine B over semiconductor supported gold nanoparticles: The effect of semiconductor support identity. Arabian Journal of Chemistry, 2019, 12, 1406-1412.	2.3	13
25	Interaction between CO2 and ionic liquids confined in the nanopores of SAPO-11. RSC Advances, 2015, 5, 48908-48915.	1.7	11
26	Metal Nanoparticles as Emerging Green Catalysts. , 0, , .		9
27	Direct oxidation of cyclohexane to adipic acid using nano-gold catalysts. Applied Petrochemical Research, 2012, 2, 61-67.	1.3	8
28	Enhancement of saturation magnetisation through the addition of a nonmagnetic element in substitutional Fe-doped In2O3 powder. Journal of Magnetism and Magnetic Materials, 2020, 500, 166413.	1.0	8
29	Nanosize Gold Promoted Vanadium Oxide Catalysts for Ammoxidation of 2-Methylpyrazine to 2-Cyanopyrazine. Topics in Catalysis, 2015, 58, 1062-1068.	1.3	6
30	Efficient synthesis of diphenyl carbonate from dibutyl carbonate and phenol using square-shaped Zn–Ti–O nanoplates as solid acid catalysts. RSC Advances, 2015, 5, 84621-84626.	1.7	6
31	Effect of the Nature of Metal Nanoparticles on the Photocatalytic Degradation of Rhodamine B. Topics in Catalysis, 2019, 62, 786-794.	1.3	6
32	Metal Organic Frameworks as Emerging Photocatalysts. , 0, , .		5
33	Acetone Reaction with Hydrogen over Mesoporous Magnesium Oxide-Supported Rhodium Nanoparticles. Topics in Catalysis, 2019, 62, 795-804.	1.3	3
34	Synthesis, Characterization, and Cyanide Photodegradation Over Cupric Oxide-Doped Zinc Oxide Nanoparticles. ACS Symposium Series, 2013, , 327-338.	0.5	2
35	Effects of pyrolysis temperatures on the textural, magnetic, morphology, and catalytic properties of supported nickel nanoparticles. Journal of Saudi Chemical Society, 2019, 23, 999-1005.	2.4	1
36	Reductive N-alkylation of primary amides using nickel-nanoparticles. Tetrahedron, 2021, , 132526.	1.0	0