Stylianos Antonarakis

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1872334/stylianos-antonarakis-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

585	82,262 citations	123	278
papers		h-index	g-index
625 ext. papers	93,711 ext. citations	11.2 avg, IF	8.54 L-index

#	Paper	IF	Citations
585	The complete sequence of a human genome <i>Science</i> , 2022 , 376, 44-53	33.3	107
584	Biallelic truncation variants in ATP9A are associated with a novel autosomal recessive neurodevelopmental disorder. <i>Npj Genomic Medicine</i> , 2021 , 6, 94	6.2	2
583	Specific Susceptibility to COVID-19 in Adults with Down Syndrome. <i>NeuroMolecular Medicine</i> , 2021 , 23, 561-571	4.6	7
582	Biallelic variants in TMEM222 cause a new autosomal recessive neurodevelopmental disorder. <i>Genetics in Medicine</i> , 2021 , 23, 1246-1254	8.1	O
581	Immune Dysregulation and the Increased Risk of Complications and Mortality Following Respiratory Tract Infections in Adults With Down Syndrome. <i>Frontiers in Immunology</i> , 2021 , 12, 621440	8.4	6
580	Phenotypic expansion of CACNA1C-associated disorders to include isolated neurological manifestations. <i>Genetics in Medicine</i> , 2021 , 23, 1922-1932	8.1	2
579	PIGG variant pathogenicity assessment reveals characteristic features within 19 families. <i>Genetics in Medicine</i> , 2021 , 23, 1873-1881	8.1	1
578	History of the methodology of disease gene identification. <i>American Journal of Medical Genetics, Part A</i> , 2021 , 185, 3266-3275	2.5	3
577	De novo variants in CELF2 that disrupt the nuclear localization signal cause developmental and epileptic encephalopathy. <i>Human Mutation</i> , 2021 , 42, 66-76	4.7	4
576	Perturbations of genes essential for Mllerian duct and Wlffian duct development in Mayer-Rokitansky-Klter-Hauser syndrome. <i>American Journal of Human Genetics</i> , 2021 , 108, 337-345	11	15
<i>575</i>	Three decades of the Human Genome Organization. <i>American Journal of Medical Genetics, Part A</i> , 2021 , 185, 3314-3321	2.5	2
574	Kirrel3-Mediated Synapse Formation Is Attenuated by Disease-Associated Missense Variants. Journal of Neuroscience, 2020 , 40, 5376-5388	6.6	3
573	Karyotypic Flexibility of the Complex Cancer Genome and the Role of Polyploidization in Maintenance of Structural Integrity of Cancer Chromosomes. <i>Cancers</i> , 2020 , 12,	6.6	2
572	Biallelic variants in PSMB1 encoding the proteasome subunit B cause impairment of proteasome function, microcephaly, intellectual disability, developmental delay and short stature. <i>Human Molecular Genetics</i> , 2020 , 29, 1132-1143	5.6	9
571	Taurine newborn screening to prevent one form of retinal degeneration and cardiomyopathy. <i>European Journal of Human Genetics</i> , 2020 , 28, 1479-1480	5.3	O
570	Down syndrome. <i>Nature Reviews Disease Primers</i> , 2020 , 6, 9	51.1	120
569	SCN8A heterozygous variants are associated with anoxic-epileptic seizures. <i>American Journal of Medical Genetics, Part A</i> , 2020 , 182, 1209-1216	2.5	4

(2018-2020)

568	Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects. <i>American Journal of Human Genetics</i> , 2020 , 106, 26-40	11	24
567	Taurine treatment of retinal degeneration and cardiomyopathy in a consanguineous family with SLC6A6 taurine transporter deficiency. <i>Human Molecular Genetics</i> , 2020 , 29, 618-623	5.6	14
566	De Novo KAT5 Variants Cause a Syndrome with Recognizable Facial Dysmorphisms, Cerebellar Atrophy, Sleep Disturbance, and Epilepsy. <i>American Journal of Human Genetics</i> , 2020 , 107, 564-574	11	8
565	2019 William Allan Award. American Journal of Human Genetics, 2020 , 106, 289-294	11	0
564	De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects. <i>American Journal of Human Genetics</i> , 2020 , 107, 311-324	11	6
563	Single cell transcriptome in aneuploidies reveals mechanisms of gene dosage imbalance. <i>Nature Communications</i> , 2019 , 10, 4495	17.4	16
562	Carrier screening for recessive disorders. <i>Nature Reviews Genetics</i> , 2019 , 20, 549-561	30.1	49
561	Bi-allelic Variants in DYNC1I2 Cause Syndromic Microcephaly with Intellectual Disability, Cerebral Malformations, and Dysmorphic Facial Features. <i>American Journal of Human Genetics</i> , 2019 , 104, 1073-1	ı d d 7	8
560	Bi-allelic Variants in IQSEC1 Cause Intellectual Disability, Developmental Delay, and Short Stature. <i>American Journal of Human Genetics</i> , 2019 , 105, 907-920	11	8
	Multi-omic measurements of heterogeneity in HeLa cells across laboratories. <i>Nature Biotechnology</i> ,		
559	2019 , 37, 314-322	44.5	129
559 558		44.5	0
	2019, 37, 314-322 Human Genomic Variants and Inherited Disease: Molecular Mechanisms and Clinical Consequences	44.55.6	
558	2019, 37, 314-322 Human Genomic Variants and Inherited Disease: Molecular Mechanisms and Clinical Consequences 2019, 125-200 Biallelic variants in FBXL3 cause intellectual disability, delayed motor development and short		0
558 557	Human Genomic Variants and Inherited Disease: Molecular Mechanisms and Clinical Consequences 2019, 125-200 Biallelic variants in FBXL3 cause intellectual disability, delayed motor development and short stature. <i>Human Molecular Genetics</i> , 2019, 28, 972-979 Biallelic loss of function variants in PPP1R21 cause a neurodevelopmental syndrome with impaired	5.6	9
558 557 556	Human Genomic Variants and Inherited Disease: Molecular Mechanisms and Clinical Consequences 2019, 125-200 Biallelic variants in FBXL3 cause intellectual disability, delayed motor development and short stature. Human Molecular Genetics, 2019, 28, 972-979 Biallelic loss of function variants in PPP1R21 cause a neurodevelopmental syndrome with impaired endocytic function. Human Mutation, 2019, 40, 267-280 Biallelic variants in KIF14 cause intellectual disability with microcephaly. European Journal of Human	5.6 4.7	9
558557556555	Human Genomic Variants and Inherited Disease: Molecular Mechanisms and Clinical Consequences 2019, 125-200 Biallelic variants in FBXL3 cause intellectual disability, delayed motor development and short stature. Human Molecular Genetics, 2019, 28, 972-979 Biallelic loss of function variants in PPP1R21 cause a neurodevelopmental syndrome with impaired endocytic function. Human Mutation, 2019, 40, 267-280 Biallelic variants in KIF14 cause intellectual disability with microcephaly. European Journal of Human Genetics, 2018, 26, 330-339 Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA	5.6 4.7 5.3	o 9 9 37
558 557 556 555 554	Human Genomic Variants and Inherited Disease: Molecular Mechanisms and Clinical Consequences 2019, 125-200 Biallelic variants in FBXL3 cause intellectual disability, delayed motor development and short stature. Human Molecular Genetics, 2019, 28, 972-979 Biallelic loss of function variants in PPP1R21 cause a neurodevelopmental syndrome with impaired endocytic function. Human Mutation, 2019, 40, 267-280 Biallelic variants in KIF14 cause intellectual disability with microcephaly. European Journal of Human Genetics, 2018, 26, 330-339 Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell Reports, 2018, 22, 1589-1599 Congenital Neuronal Ceroid Lipofuscinosis with a Novel CTSD Gene Mutation: A Rare Cause of	5.6 4·7 5·3 10.6	o 9 9 37 80

550	Biallelic variants in LINGO1 are associated with autosomal recessive intellectual disability, microcephaly, speech and motor delay. <i>Genetics in Medicine</i> , 2018 , 20, 778-784	8.1	16
549	Excess Synaptojanin 1 Contributes to Place Cell Dysfunction and Memory Deficits in the Aging Hippocampus in Three Types of Alzheimer's Disease. <i>Cell Reports</i> , 2018 , 23, 2967-2975	10.6	25
548	Translating molecular advances in Down syndrome and Fragile X syndrome into therapies. <i>European Neuropsychopharmacology</i> , 2018 , 28, 675-690	1.2	7
547	Slightly deleterious genomic variants and transcriptome perturbations in Down syndrome embryonic selection. <i>Genome Research</i> , 2018 , 28, 1-10	9.7	27
546	Extensive cellular heterogeneity of X inactivation revealed by single-cell allele-specific expression in human fibroblasts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 13015-13020	11.5	38
545	Bi-allelic Loss-of-Function Variants in DNMBP Cause Infantile Cataracts. <i>American Journal of Human Genetics</i> , 2018 , 103, 568-578	11	20
544	Visual impairment and progressive phthisis bulbi caused by recessive pathogenic variant in MARK3. <i>Human Molecular Genetics</i> , 2018 , 27, 2703-2711	5.6	15
543	No evidence for the presence of genetic variants predisposing to psychotic disorders on the non-deleted 22q11.2 allele of VCFS patients. <i>Translational Psychiatry</i> , 2017 , 7, e1039	8.6	9
542	Detection of Imprinted Genes by Single-Cell Allele-Specific Gene Expression. <i>American Journal of Human Genetics</i> , 2017 , 100, 444-453	11	34
541	X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. <i>Nature Communications</i> , 2017 , 8, 14279	17.4	87
540	MBV: a method to solve sample mislabeling and detect technical bias in large combined genotype and sequencing assay datasets. <i>Bioinformatics</i> , 2017 , 33, 1895-1897	7.2	15
539	Genomic databases: A WHO affair. <i>Science</i> , 2017 , 356, 812-813	33.3	3
538	Down syndrome and the complexity of genome dosage imbalance. <i>Nature Reviews Genetics</i> , 2017 , 18, 147-163	30.1	143
537	Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells. <i>Nature Communications</i> , 2017 , 8, 1212	17.4	59
536	Genome-Wide Association Study to Find Modifiers for Tetralogy of Fallot in the 22q11.2 Deletion Syndrome Identifies Variants in the Locus on 5q14.3. <i>Circulation: Cardiovascular Genetics</i> , 2017 , 10,		14
535	Germline PMS2 and somatic POLE exonuclease mutations cause hypermutability of the leading DNA strand in biallelic mismatch repair deficiency syndrome brain tumours. <i>Journal of Pathology</i> , 2017 , 243, 331-341	9.4	9
534	The effect of genetic variation on promoter usage and enhancer activity. <i>Nature Communications</i> , 2017 , 8, 1358	17.4	26
533	SERPINI1 pathogenic variants: An emerging cause of childhood-onset progressive myoclonic epilepsy. <i>American Journal of Medical Genetics, Part A</i> , 2017 , 173, 2456-2460	2.5	7

532	Viva Europa, a Land of Excellence in Research and Innovation for Health and Wellbeing. <i>Progress in Preventive Medicine (New York, N Y)</i> , 2017 , 2, e006	0.7	5
531	The genomic landscape of human cellular circadian variation points to a novel role for the signalosome. <i>ELife</i> , 2017 , 6,	8.9	6
530	DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome. <i>American Journal of Human Genetics</i> , 2016 , 99, 555-566	11	41
529	Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy. <i>American Journal of Human Genetics</i> , 2016 , 99, 1368-1376	11	32
528	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. <i>Cell</i> , 2016 , 167, 1145-1149	56.2	232
527	Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. <i>Cell</i> , 2016 , 167, 139	98 5 4. 4 1.	4. ę 3⁄4
526	Exome sequencing discloses KALRN homozygous variant as likely cause of intellectual disability and short stature in a consanguineous pedigree. <i>Human Genomics</i> , 2016 , 10, 26	6.8	12
525	HGVS Recommendations for the Description of Sequence Variants: 2016 Update. <i>Human Mutation</i> , 2016 , 37, 564-9	4.7	792
524	Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia. <i>American Journal of Human Genetics</i> , 2016 , 98, 615-26	11	59
523	Pure Progressive Ataxia and Palatal Tremor (PAPT) Associated with a New Polymerase Gamma (POLG) Mutation. <i>Cerebellum</i> , 2016 , 15, 829-831	4.3	13
522	Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. <i>Nature Genetics</i> , 2016 , 48, 398-406	36.3	242
521	APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. <i>Genome Research</i> , 2016 , 26, 174-82	9.7	110
520	Brief report: isogenic induced pluripotent stem cell lines from an adult with mosaic down syndrome model accelerated neuronal ageing and neurodegeneration. <i>Stem Cells</i> , 2015 , 33, 2077-84	5.8	42
519	Galanin pathogenic mutations in temporal lobe epilepsy. <i>Human Molecular Genetics</i> , 2015 , 24, 3082-91	5.6	17
518	Familial epilepsy in Algeria: Clinical features and inheritance profiles. <i>Seizure: the Journal of the British Epilepsy Association</i> , 2015 , 31, 12-8	3.2	6
517	Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing. <i>PLoS Genetics</i> , 2015 , 11, e1004958	6	140
516	Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13-App region. <i>PLoS Genetics</i> , 2015 , 11, e1005062	6	23
515	Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendelian disorders. <i>Genome Research</i> , 2015 , 25, 948-57	9.7	38

514	Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. <i>Science</i> , 2015 , 348, 666-9	33.3	170
513	Exome sequencing in the diagnosis of an atypical phenotype of infantile hyalinosis. <i>Middle East Journal of Medical Genetics</i> , 2015 , 4, 18-23		1
512	HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. <i>Nature</i> , 2015 , 526, 212-7	50.4	269
511	Association between Variants at BCL11A Erythroid-Specific Enhancer and Fetal Hemoglobin Levels among Sickle Cell Disease Patients in Cameroon: Implications for Future Therapeutic Interventions. <i>OMICS A Journal of Integrative Biology</i> , 2015 , 19, 627-31	3.8	15
510	A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD). <i>Human Molecular Genetics</i> , 2015 , 24, 3143-54	5.6	93
509	CATCHing putative causative variants in consanguineous families. <i>BMC Bioinformatics</i> , 2015 , 16, 310	3.6	12
508	The effect of heterogeneous Transcription Start Sites (TSS) on the translatome: implications for the mammalian cellular phenotype. <i>BMC Genomics</i> , 2015 , 16, 986	4.5	15
507	HSA21 Single-Minded 2 (Sim2) Binding Sites Co-Localize with Super-Enhancers and Pioneer Transcription Factors in Pluripotent Mouse ES Cells. <i>PLoS ONE</i> , 2015 , 10, e0126475	3.7	5
506	A Case of Wiedemann-Steiner Syndrome Associated with a 46,XY Disorder of Sexual Development and Gonadal Dysgenesis. <i>Sexual Development</i> , 2015 , 9, 289-95	1.6	10
505	Biased allelic expression in human primary fibroblast single cells. <i>American Journal of Human Genetics</i> , 2015 , 96, 70-80	11	88
504	Perturbations of heart development and function in cardiomyocytes from human embryonic stem cells with trisomy 21. <i>Stem Cells</i> , 2015 , 33, 1434-46	5.8	19
503	DNA-Methylation Patterns in Trisomy 21 Using Cells from Monozygotic Twins. <i>PLoS ONE</i> , 2015 , 10, e013	3 <i>55</i> 55	39
502	Next generation diagnostics on cardiomyopathy. <i>Molecular Cytogenetics</i> , 2014 , 7, I4	2	
501	Domains of genome-wide gene expression dysregulation in Down's syndrome. <i>Nature</i> , 2014 , 508, 345-5	0 50.4	195
500	Guidelines for investigating causality of sequence variants in human disease. <i>Nature</i> , 2014 , 508, 469-76	50.4	910
499	Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. <i>Stem Cell Research</i> , 2014 , 12, 323-37	1.6	49
498	Simultaneous identification and prioritization of variants in familial, de novo, and somatic genetic disorders with VariantMaster. <i>Genome Research</i> , 2014 , 24, 349-55	9.7	31
497	Data in brief: Transcriptome analysis of induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. <i>Genomics Data</i> , 2014 , 2, 226-9		9

(2013-2014)

496	Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. <i>Human Mutation</i> , 2014 , 35, 1203-10	4.7	67
495	A novel homozygous mutation in FGFR3 causes tall stature, severe lateral tibial deviation, scoliosis, hearing impairment, camptodactyly, and arachnodactyly. <i>Human Mutation</i> , 2014 , 35, 959-63	4.7	51
494	Multiplex targeted high-throughput sequencing for Mendelian cardiac disorders. <i>Clinical Genetics</i> , 2014 , 85, 365-70	4	8
493	Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes. <i>PLoS ONE</i> , 2014 , 9, e112745	3.7	59
492	Cognition and hippocampal plasticity in the mouse is altered by monosomy of a genomic region implicated in Down syndrome. <i>Genetics</i> , 2014 , 197, 899-912	4	14
49 ¹	Recessive thrombocytopenia likely due to a homozygous pathogenic variant in the FYB gene: case report. <i>BMC Medical Genetics</i> , 2014 , 15, 135	2.1	19
490	DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy. <i>Neurology</i> , 2014 , 82, 2101-6	6.5	98
489	Loss of function mutation in the palmitoyl-transferase HHAT leads to syndromic 46,XY disorder of sex development by impeding Hedgehog protein palmitoylation and signaling. <i>PLoS Genetics</i> , 2014 , 10, e1004340	6	54
488	Exome sequencing reveals a mutation in DMP1 in a family with familial sclerosing bone dysplasia. <i>Bone</i> , 2014 , 68, 142-5	4.7	12
487	Frequent cases of RAS-mutated Down syndrome acute lymphoblastic leukaemia lack JAK2 mutations. <i>Nature Communications</i> , 2014 , 5, 4654	17.4	41
486	Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. <i>EMBO Molecular Medicine</i> , 2014 , 6, 259-7	7 ¹²	117
485	Extrachromosomal driver mutations in glioblastoma and low-grade glioma. <i>Nature Communications</i> , 2014 , 5, 5690	17.4	45
484	Gene age predicts the strength of purifying selection acting on gene expression variation in humans. <i>American Journal of Human Genetics</i> , 2014 , 95, 660-74	11	26
483	Analysis of the Born in Bradford birth cohort. <i>Lancet, The</i> , 2014 , 383, 123	40	1
482	TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm. <i>Retrovirology</i> , 2013 , 10, 20	3.6	105
481	Human Gene Mutation in Inherited Disease 2013 , 1-48		1
480	Genetic characterization of northeastern Italian population isolates in the context of broader European genetic diversity. <i>European Journal of Human Genetics</i> , 2013 , 21, 659-65	5.3	50
479	Molecular and clinical characterization of 25 individuals with exonic deletions of NRXN1 and comprehensive review of the literature. <i>American Journal of Medical Genetics Part B:</i> Neuropsychiatric Genetics, 2013 , 162B, 388-403	3.5	76

478	Assessment of transcript reconstruction methods for RNA-seq. <i>Nature Methods</i> , 2013 , 10, 1177-84	21.6	477
477	Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. <i>Genome Research</i> , 2013 , 23, 1554-62	9.7	140
476	Genetic and epigenetic regulation of human lincRNA gene expression. <i>American Journal of Human Genetics</i> , 2013 , 93, 1015-26	11	55
475	Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. <i>Nature Biotechnology</i> , 2013 , 31, 1015-22	44.5	187
474	MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study. <i>Clinical Genetics</i> , 2013 , 84, 539-45	4	66
473	Pathogenic variants in non-protein-coding sequences. <i>Clinical Genetics</i> , 2013 , 84, 422-8	4	28
472	Transcriptome and genome sequencing uncovers functional variation in humans. <i>Nature</i> , 2013 , 501, 506	6-511.4	1323
47 ¹	Purifying selection in mammalian mitochondrial protein-coding genes is highly effective and congruent with evolution of nuclear genes. <i>Molecular Biology and Evolution</i> , 2013 , 30, 347-55	8.3	41
470	Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. <i>American Journal of Human Genetics</i> , 2013 , 93, 346-56	11	126
469	The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome. <i>Genome Research</i> , 2013 , 23, 1410-21	9.7	48
468	Exome sequencing identifies putative drivers of progression of transient myeloproliferative disorder to AMKL in infants with Down syndrome. <i>Blood</i> , 2013 , 122, 554-61	2.2	60
467	Passive and active DNA methylation and the interplay with genetic variation in gene regulation. <i>ELife</i> , 2013 , 2, e00523	8.9	295
466	An integrated encyclopedia of DNA elements in the human genome. <i>Nature</i> , 2012 , 489, 57-74	50.4	11449
465	Duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion. <i>Journal of Medical Genetics</i> , 2012 , 49, 119-25	5.8	68
464	Preliminary structure and predictive value of attenuated negative symptoms in 22q11.2 deletion syndrome. <i>Psychiatry Research</i> , 2012 , 196, 277-84	9.9	55
463	Homozygous deletion of a gene-free region of 4p15 in a child with multiple anomalies: could biallelic loss of conserved, non-coding elements lead to a phenotype?. <i>European Journal of Medical Genetics</i> , 2012 , 55, 63-6	2.6	3
462	BDNF and DYRK1A are variable and inversely correlated in lymphoblastoid cell lines from Down syndrome patients. <i>Molecular Neurobiology</i> , 2012 , 46, 297-303	6.2	13
461	Landscape of transcription in human cells. <i>Nature</i> , 2012 , 489, 101-8	50.4	3544

460	Genomic determinants in the phenotypic variability of Down syndrome. <i>Progress in Brain Research</i> , 2012 , 197, 15-28	2.9	19
459	Evidence for transcript networks composed of chimeric RNAs in human cells. <i>PLoS ONE</i> , 2012 , 7, e28213	B3.7	51
458	Trisomy for synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes. <i>Human Molecular Genetics</i> , 2012 , 21, 3156-72	5.6	76
457	Tandem repeat sequence variation as causative cis-eQTLs for protein-coding gene expression variation: the case of CSTB. <i>Human Mutation</i> , 2012 , 33, 1302-9	4.7	24
456	BLUEPRINT to decode the epigenetic signature written in blood. <i>Nature Biotechnology</i> , 2012 , 30, 224-6	44.5	261
455	Novel homozygous, heterozygous and hemizygous FRMD7 gene mutations segregated in the same consanguineous family with congenital X-linked nystagmus. <i>European Journal of Human Genetics</i> , 2012 , 20, 1032-6	5.3	14
454	A single-nucleotide substitution mutator phenotype revealed by exome sequencing of human colon adenomas. <i>Cancer Research</i> , 2012 , 72, 6279-89	10.1	50
453	Genome-wide linkage and copy number variation analysis reveals 710 kb duplication on chromosome 1p31.3 responsible for autosomal dominant omphalocele. <i>Journal of Medical Genetics</i> , 2012 , 49, 270-6	5.8	8
452	High-throughput sequencing and rare genetic diseases. <i>Molecular Syndromology</i> , 2012 , 3, 197-203	1.5	5
451	Extensive natural variation for cellular hydrogen peroxide release is genetically controlled. <i>PLoS ONE</i> , 2012 , 7, e43566	3.7	4
450	Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. <i>Nature Genetics</i> , 2011 , 44, 133-9	36.3	313
449	Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. <i>Nature</i> , 2011 , 478, 97-102	50.4	322
448	Mouse models for Down syndrome-associated developmental cognitive disabilities. <i>Developmental Neuroscience</i> , 2011 , 33, 404-13	2.2	44
447	A de novo 12q13.11 microdeletion in a patient with severe mental retardation, cleft palate, and high myopia. <i>European Journal of Medical Genetics</i> , 2011 , 54, 94-6	2.6	7
446	A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biology, 2011, 9, e1001046	9.7	1060
445	Refinement of the X-linked nonsyndromic high-grade myopia locus MYP1 on Xq28 and exclusion of 13 known positional candidate genes by direct sequencing 2011 , 52, 6814-9		19
444	Network-guided analysis of genes with altered somatic copy number and gene expression reveals pathways commonly perturbed in metastatic melanoma. <i>PLoS ONE</i> , 2011 , 6, e18369	3.7	40
443	From sequence to functional understanding: the difficult road ahead. <i>Genome Medicine</i> , 2011 , 3, 21	14.4	1

442	Systems medicine and integrated care to combat chronic noncommunicable diseases. <i>Genome Medicine</i> , 2011 , 3, 43	14.4	137
441	Identification of cis- and trans-regulatory variation modulating microRNA expression levels in human fibroblasts. <i>Genome Research</i> , 2011 , 21, 68-73	9.7	57
440	Rapid detection of genetic variants in hypertrophic cardiomyopathy by custom DNA resequencing array in clinical practice. <i>Journal of Medical Genetics</i> , 2011 , 48, 572-6	5.8	33
439	Tmprss3, a transmembrane serine protease deficient in human DFNB8/10 deafness, is critical for cochlear hair cell survival at the onset of hearing. <i>Journal of Biological Chemistry</i> , 2011 , 286, 17383-97	5.4	54
438	DNA methylation profiles of human active and inactive X chromosomes. <i>Genome Research</i> , 2011 , 21, 1592-600	9.7	186
437	A high-resolution anatomical atlas of the transcriptome in the mouse embryo. <i>PLoS Biology</i> , 2011 , 9, e1000582	9.7	467
436	Chromosome conformation capture uncovers potential genome-wide interactions between human conserved non-coding sequences. <i>PLoS ONE</i> , 2011 , 6, e17634	3.7	16
435	NANOG priming before full reprogramming may generate germ cell tumours. <i>European Cells and Materials</i> , 2011 , 22, 258-74; discussio 274	4.3	19
434	New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism. <i>Nature</i> , 2010 , 466, 642-6	50.4	84
433	Mendelian disorders and multifactorial traits: the big divide or one for all?. <i>Nature Reviews Genetics</i> , 2010 , 11, 380-4	30.1	60
432	De novo duplication of MECP2 in a girl with mental retardation and no obvious dysmorphic features. <i>Clinical Genetics</i> , 2010 , 78, 175-80	4	21
431	Methylation profiling in individuals with uniparental disomy identifies novel differentially methylated regions on chromosome 15. <i>Genome Research</i> , 2010 , 20, 1271-8	9.7	36
430	Down syndrome: from understanding the neurobiology to therapy. <i>Journal of Neuroscience</i> , 2010 , 30, 14943-5	6.6	89
429	A spectrum of LMX1B mutations in Nail-Patella syndrome: new point mutations, deletion, and evidence of mosaicism in unaffected parents. <i>Genetics in Medicine</i> , 2010 , 12, 431-9	8.1	21
428	Eye gaze during face processing in children and adolescents with 22q11.2 deletion syndrome. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2010 , 49, 665-74	7.2	30
427	Human Genome Sequence and Variation 2010 , 31-53		3
426	Lessons from the Genome-Wide Association Studies for Complex Multifactorial Disorders and Traits 2010 , 287-297		3
425	Human Gene Mutation: Mechanisms and Consequences 2010 , 319-363		5

424	Human Hemoglobin 2010 , 365-401		10
423	A recurrent 14q32.2 microdeletion mediated by expanded TGG repeats. <i>Human Molecular Genetics</i> , 2010 , 19, 1967-73	5.6	32
422	A mouse embryonic stem cell bank for inducible overexpression of human chromosome 21 genes. <i>Genome Biology</i> , 2010 , 11, R64	18.3	12
421	Regulation of fibrinogen production by microRNAs. <i>Blood</i> , 2010 , 116, 2608-15	2.2	81
420	Eye Gaze During Face Processing in Children and Adolescents With 22q11.2 Deletion Syndrome. Journal of the American Academy of Child and Adolescent Psychiatry, 2010 , 49, 665-674	7.2	1
419	Array-CGH analysis in a patient with WAGR syndrome and a reciprocal translocation t(2;11) inherited from the normal father with double translocation. <i>American Journal of Medical Genetics, Part A</i> , 2010 , 152A, 2130-3	2.5	4
418	A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes. <i>PLoS ONE</i> , 2010 , 5, e10263	3.7	42
417	A systematic enhancer screen using lentivector transgenesis identifies conserved and non-conserved functional elements at the Olig1 and Olig2 locus. <i>PLoS ONE</i> , 2010 , 5, e15741	3.7	23
416	Genetic structure of Europeans: a view from the North-East. <i>PLoS ONE</i> , 2009 , 4, e5472	3.7	237
415	Detection of genomic variation by selection of a 9 mb DNA region and high throughput sequencing. <i>PLoS ONE</i> , 2009 , 4, e6659	3.7	11
414	The role of biobanking in rare diseases: European consensus expert group report. <i>Biopreservation and Biobanking</i> , 2009 , 7, 155-6	2.1	22
413	A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. <i>Human Molecular Genetics</i> , 2009 , 18, 4756-69	5.6	86
412	Common regulatory variation impacts gene expression in a cell type-dependent manner. <i>Science</i> , 2009 , 325, 1246-50	33.3	607
411	Disease-causing 7.4 kb cis-regulatory deletion disrupting conserved non-coding sequences and their interaction with the FOXL2 promotor: implications for mutation screening. <i>PLoS Genetics</i> , 2009 , 5, e1000522	6	76
410	Common genetic variation and the control of HIV-1 in humans. <i>PLoS Genetics</i> , 2009 , 5, e1000791	6	310
409	Transcriptional and post-transcriptional profile of human chromosome 21. <i>Genome Research</i> , 2009 , 19, 1471-9	9.7	2
408	Aire-deficient C57BL/6 mice mimicking the common human 13-base pair deletion mutation present with only a mild autoimmune phenotype. <i>Journal of Immunology</i> , 2009 , 182, 3902-18	5.3	103
407	Three common polymorphisms in the CYBA gene form a haplotype associated with decreased ROS generation. <i>Human Mutation</i> , 2009 , 30, 1123-33	4.7	45

406	Variation in novel exons (RACEfrags) of the MECP2 gene in Rett syndrome patients and controls. <i>Human Mutation</i> , 2009 , 30, E866-79	4.7	1
405	Proliferation deficits and gene expression dysregulation in Down's syndrome (Ts1Cje) neural progenitor cells cultured from neurospheres. <i>Journal of Neuroscience Research</i> , 2009 , 87, 3143-52	4.4	32
404	Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. <i>European Journal of Human Genetics</i> , 2009 , 17, 454-66	5.3	203
403	William Allan Award Introduction: Haig H. Kazazian, Jr <i>American Journal of Human Genetics</i> , 2009 , 84, 103-104	11	О
402	The genome sequence of taurine cattle: a window to ruminant biology and evolution. <i>Science</i> , 2009 , 324, 522-8	33.3	863
401	Characterization of an interstitial deletion 6q13-q14.1 in a female with mild mental retardation, language delay and minor dysmorphisms. <i>European Journal of Medical Genetics</i> , 2009 , 52, 49-52	2.6	10
400	Identifying protein-coding genes in genomic sequences. <i>Genome Biology</i> , 2009 , 10, 201	18.3	58
399	Efficient targeted transcript discovery via array-based normalization of RACE libraries. <i>Nature Methods</i> , 2008 , 5, 629-35	21.6	35
398	Assaying the regulatory potential of mammalian conserved non-coding sequences in human cells. <i>Genome Biology</i> , 2008 , 9, R168	18.3	18
397	Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. <i>New England Journal of Medicine</i> , 2008 , 359, 1685-99	59.2	587
396	Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down's syndrome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 9415-20	11.5	133
395	CNVs and genetic medicine (excitement and consequences of a rediscovery). <i>Cytogenetic and Genome Research</i> , 2008 , 123, 7-16	1.9	16
394	Genomic determinants of the efficiency of internal ribosomal entry sites of viral and cellular origin. <i>Nucleic Acids Research</i> , 2008 , 36, 6918-25	20.1	13
393	Human nocturnal frontal lobe epilepsy: pharmocogenomic profiles of pathogenic nicotinic acetylcholine receptor beta-subunit mutations outside the ion channel pore. <i>Molecular Pharmacology</i> , 2008 , 74, 379-91	4.3	51
392	Pericentromeric instability and spontaneous emergence of human neoacrocentric and minute chromosomes in the alternative pathway of telomere lengthening. <i>Cancer Research</i> , 2008 , 68, 8146-55	10.1	21
391	In vitro whole-genome analysis identifies a susceptibility locus for HIV-1. <i>PLoS Biology</i> , 2008 , 6, e32	9.7	59
390	Welcome to PathoGenetics. PathoGenetics, 2008, 1, 1		4
389	Characterization of mouse Dactylaplasia mutations: a model for human ectrodactyly SHFM3. Mammalian Genome, 2008, 19, 272-8	3.2	17

(2007-2008)

388	Functional genetic variation of human miRNAs and phenotypic consequences. <i>Mammalian Genome</i> , 2008 , 19, 503-9	3.2	70
387	Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. <i>Human Mutation</i> , 2008 , 29, 289-98	4.7	193
386	A DNA resequencing array for pathogenic mutation detection in hypertrophic cardiomyopathy. <i>Human Mutation</i> , 2008 , 29, 879-85	4.7	59
385	Subtelomeric 6p deletion: clinical and array-CGH characterization in two patients. <i>American Journal of Medical Genetics, Part A</i> , 2008 , 146A, 2094-102	2.5	26
384	Monozygotic twins discordant for trisomy 21 and maternal 21q inheritance: a complex series of events. <i>American Journal of Medical Genetics, Part A</i> , 2008 , 146A, 2086-93	2.5	29
383	Mapping of small RNAs in the human ENCODE regions. <i>American Journal of Human Genetics</i> , 2008 , 82, 971-81	11	24
382	Evolutionary forces shape the human RFPL1,2,3 genes toward a role in neocortex development. <i>American Journal of Human Genetics</i> , 2008 , 83, 208-18	11	22
381	DYRK1A-dosage imbalance perturbs NRSF/REST levels, deregulating pluripotency and embryonic stem cell fate in Down syndrome. <i>American Journal of Human Genetics</i> , 2008 , 83, 388-400	11	123
380	TMPRSS3, a type II transmembrane serine protease mutated in non-syndromic autosomal recessive deafness. <i>Frontiers in Bioscience - Landmark</i> , 2008 , 13, 1557-67	2.8	30
379	Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome. <i>Genome Research</i> , 2007 , 17, 760-74	9.7	163
378	Sequence variation in ultraconserved and highly conserved elements does not cause X-linked mental retardation. <i>American Journal of Medical Genetics, Part A</i> , 2007 , 143A, 888-90	2.5	3
377	Epistatic interactions with a common hypomorphic RET allele in syndromic Hirschsprung disease. <i>Human Mutation</i> , 2007 , 28, 790-6	4.7	71
376	Abnormal cortical activation during response inhibition in 22q11.2 deletion syndrome. <i>Human Brain Mapping</i> , 2007 , 28, 533-42	5.9	50
375	Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. <i>Nature Reviews Genetics</i> , 2007 , 8, 639-46	30.1	335
374	Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. <i>Nature</i> , 2007 , 447, 799-816	50.4	4121
373	MECP2 mutant allele in a boy with Rett syndrome and his unaffected heterozygous mother. <i>Brain and Development</i> , 2007 , 29, 47-50	2.2	35
372	Islands of euchromatin-like sequence and expressed polymorphic sequences within the short arm of human chromosome 21. <i>Genome Research</i> , 2007 , 17, 1690-6	9.7	21
371	Early history of mammals is elucidated with the ENCODE multiple species sequencing data. <i>PLoS Genetics</i> , 2007 , 3, e2	6	91

370	Prominent use of distal 5' transcription start sites and discovery of a large number of additional exons in ENCODE regions. <i>Genome Research</i> , 2007 , 17, 746-59	9.7	156
369	Structured RNAs in the ENCODE selected regions of the human genome. <i>Genome Research</i> , 2007 , 17, 852-64	9.7	131
368	Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution. <i>Genome Research</i> , 2007 , 17, 839-51	9.7	158
367	The implications of alternative splicing in the ENCODE protein complement. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 5495-500	11.5	177
366	Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20443-8	11.5	84
365	Cytogenetic, Molecular and FISH Analysis of an Isodicentric Chromosome 21 idic(21)(q22.3) in a Mildly-Affected Patient with Down Syndrome. <i>International Journal of Human Genetics</i> , 2007 , 7, 215-218	3 ¹	3
364	Promoter polymorphisms and allelic imbalance in ABCB1 expression. <i>Pharmacogenetics and Genomics</i> , 2007 , 17, 951-9	1.9	22
363	Genomewide linkage scan for split-hand/foot malformation with long-bone deficiency in a large Arab family identifies two novel susceptibility loci on chromosomes 1q42.2-q43 and 6q14.1. <i>American Journal of Human Genetics</i> , 2007 , 80, 105-11	11	28
362	Autosomal dominant nonsyndromic cleft lip and palate: significant evidence of linkage at 18q21.1. <i>American Journal of Human Genetics</i> , 2007 , 81, 180-8	11	14
361	Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. <i>American Journal of Human Genetics</i> , 2007 , 81, 252-63	11	152
360	Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. <i>American Journal of Human Genetics</i> , 2007 , 81, 405-13	11	305
359	Gene duplication: a drive for phenotypic diversity and cause of human disease. <i>Annual Review of Genomics and Human Genetics</i> , 2007 , 8, 17-35	9.7	172
358	A whole-genome association study of major determinants for host control of HIV-1. <i>Science</i> , 2007 , 317, 944-7	33.3	999
357	Ectrodactyly with aplasia of long bones (OMIM; 119100) in a large inbred Arab family with an apparent autosomal dominant inheritance and reduced penetrance: clinical and genetic analysis. American Journal of Medical Genetics, Part A, 2006, 140, 1440-6	2.5	16
356	Frequency of genomic rearrangements involving the SHFM3 locus at chromosome 10q24 in syndromic and non-syndromic split-hand/foot malformation. <i>American Journal of Medical Genetics, Part A,</i> 2006 , 140, 1375-83	2.5	19
355	Split-hand/split-foot malformation 3 (SHFM3) at 10q24, development of rapid diagnostic methods and gene expression from the region. <i>American Journal of Medical Genetics, Part A</i> , 2006 , 140, 1384-95	2.5	26
354	No evidence for an effect of COMT Val158Met genotype on executive function in patients with 22q11 deletion syndrome. <i>American Journal of Psychiatry</i> , 2006 , 163, 537-9	11.9	40
353	DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 120-6	10.2	232

352	GENCODE: producing a reference annotation for ENCODE. <i>Genome Biology</i> , 2006 , 7 Suppl 1, S4.1-9	18.3	434
351	EGASP: the human ENCODE Genome Annotation Assessment Project. <i>Genome Biology</i> , 2006 , 7 Suppl 1, S2.1-31	18.3	187
350	Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes. <i>American Journal of Human Genetics</i> , 2006 , 79, 332-41	11	149
349	Genomewide scan for nonsyndromic cleft lip and palate in multigenerational Indian families reveals significant evidence of linkage at 13q33.1-34. <i>American Journal of Human Genetics</i> , 2006 , 79, 580-5	11	26
348	Mutations in Human Genetic Disease 2006,		2
347	The challenge of Down syndrome. <i>Trends in Molecular Medicine</i> , 2006 , 12, 473-9	11.5	94
346	CpG Dinucleotides and Human Disorders 2006 ,		2
345	Conserved noncoding sequences are selectively constrained and not mutation cold spots. <i>Nature Genetics</i> , 2006 , 38, 223-7	36.3	184
344	Mendelian disorders deserve more attention. <i>Nature Reviews Genetics</i> , 2006 , 7, 277-82	30.1	168
343	Tandem chimerism as a means to increase protein complexity in the human genome. <i>Genome Research</i> , 2006 , 16, 37-44	9.7	157
342	Two high throughput technologies to detect segmental aneuploidies identify new Williams-Beuren syndrome patients with atypical deletions. <i>Journal of Medical Genetics</i> , 2006 , 43, 266-73	5.8	54
341	Dodecamer Repeat Expansion in Progressive Myoclonus Epilepsy 1 2006 , 121-141		
340	Comparative gene finding in chicken indicates that we are closing in on the set of multi-exonic widely expressed human genes. <i>Nucleic Acids Research</i> , 2005 , 33, 1935-9	20.1	10
339	LRP5 gene polymorphisms and idiopathic osteoporosis in men. <i>Bone</i> , 2005 , 37, 770-5	4.7	62
339		4.7	62 42
	LRP5 gene polymorphisms and idiopathic osteoporosis in men. <i>Bone</i> , 2005 , 37, 770-5 Pathogenic mutations and polymorphisms in the lipoprotein receptor-related protein 5 reveal a		
338	LRP5 gene polymorphisms and idiopathic osteoporosis in men. <i>Bone</i> , 2005 , 37, 770-5 Pathogenic mutations and polymorphisms in the lipoprotein receptor-related protein 5 reveal a new biological pathway for the control of bone mass. <i>Current Opinion in Lipidology</i> , 2005 , 16, 207-14 Arg16 homozygosity of the beta2-adrenergic receptor improves the outcome after beta2-agonist	4.4	42

334	Transcriptional activation by bidirectional RNA polymerase II elongation over a silent promoter. <i>EMBO Reports</i> , 2005 , 6, 956-60	6.5	15
333	Gene finding in the chicken genome. <i>BMC Bioinformatics</i> , 2005 , 6, 131	3.6	26
332	A response to Suzuki et al. How pathogenic is the p.D104N/endostatin polymorphic allele of COL18A1 in Knobloch syndrome? [] Human Mutation, 2005, 25, 316-316	4.7	2
331	Different mechanisms preclude mutant CLDN14 proteins from forming tight junctions in vitro. <i>Human Mutation</i> , 2005 , 25, 543-9	4.7	40
330	Peutz-Jeghers LKB1 mutants fail to activate GSK-3beta, preventing it from inhibiting Wnt signaling. <i>Molecular Genetics and Genomics</i> , 2005 , 273, 184-96	3.1	40
329	A novel TMPRSS3 missense mutation in a DFNB8/10 family prevents proteolytic activation of the protein. <i>Human Genetics</i> , 2005 , 117, 528-35	6.3	38
328	Genome-wide associations of gene expression variation in humans. <i>PLoS Genetics</i> , 2005 , 1, e78	6	431
327	Evolutionary comparison provides evidence for pathogenicity of RMRP mutations. <i>PLoS Genetics</i> , 2005 , 1, e47	6	48
326	LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. <i>Human Molecular Genetics</i> , 2005 , 14, 2209-19	5.6	95
325	Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes. <i>Human Molecular Genetics</i> , 2005 , 14, 3741-9	5.6	93
324	Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. <i>Journal of Biological Chemistry</i> , 2005 , 280, 28936-4	.35.4	164
323	Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 4068-73	11.5	233
322	The cerebellar transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model for Down syndrome. <i>Human Molecular Genetics</i> , 2005 , 14, 373-84	5.6	78
321	Association of the connexin36 gene with juvenile myoclonic epilepsy. <i>Journal of Medical Genetics</i> , 2004 , 41, e93	5.8	62
320	Detection of aneuploidies by paralogous sequence quantification. <i>Journal of Medical Genetics</i> , 2004 , 41, 908-15	5.8	39
319	Comparison of human chromosome 21 conserved nongenic sequences (CNGs) with the mouse and dog genomes shows that their selective constraint is independent of their genic environment. <i>Genome Research</i> , 2004 , 14, 852-9	9.7	55
318	The subcellular localization of the ChoRE-binding protein, encoded by the Williams-Beuren syndrome critical region gene 14, is regulated by 14-3-3. <i>Human Molecular Genetics</i> , 2004 , 13, 1505-14	5.6	58
317	Chromosome 21 and down syndrome: from genomics to pathophysiology. <i>Nature Reviews Genetics</i> , 2004 , 5, 725-38	30.1	476

(2003-2004)

316	Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. <i>Nature</i> , 2004 , 432, 695-716	50.4	2143
315	The human sugar-phosphate/phosphate exchanger family SLC37. <i>Pflugers Archiv European Journal of Physiology</i> , 2004 , 447, 780-3	4.6	18
314	No association between DUP25 and anxiety disorders. <i>American Journal of Medical Genetics Part A</i> , 2004 , 128B, 80-3		13
313	A narcolepsy susceptibility locus maps to a 5 Mb region of chromosome 21q. <i>Annals of Neurology</i> , 2004 , 56, 382-8	9.4	44
312	Knobloch syndrome: novel mutations in COL18A1, evidence for genetic heterogeneity, and a functionally impaired polymorphism in endostatin. <i>Human Mutation</i> , 2004 , 23, 77-84	4.7	79
311	Gene expression from the aneuploid chromosome in a trisomy mouse model of down syndrome. <i>Genome Research</i> , 2004 , 14, 1268-74	9.7	151
310	The Caenorhabditis elegans ortholog of C21orf80, a potential new protein O-fucosyltransferase, is required for normal development. <i>Genomics</i> , 2004 , 84, 320-30	4.3	21
309	The ENCODE (ENCyclopedia Of DNA Elements) Project. <i>Science</i> , 2004 , 306, 636-40	33.3	1692
308	Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. <i>American Journal of Human Genetics</i> , 2004 , 74, 866-75	11	207
307	Genetic variability of mu-opioid receptor in an obstetric population. <i>Anesthesiology</i> , 2004 , 100, 1030-3	4.3	41
306	Trisomic Phase Inference. Lecture Notes in Computer Science, 2004, 1-8	0.9	1
305	Comparison of mouse and human genomes followed by experimental verification yields an estimated 1,019 additional genes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 1140-5	11.5	95
304	A genomic rearrangement resulting in a tandem duplication is associated with split hand-split foot malformation 3 (SHFM3) at 10q24. <i>Human Molecular Genetics</i> , 2003 , 12, 1959-71	5.6	75
303	Asp1424Asn MYH9 mutation results in an unstable protein responsible for the phenotypes in May-Hegglin anomaly/Fechtner syndrome. <i>Blood</i> , 2003 , 102, 529-34	2.2	41
302	FOXL2-mutations in blepharophimosis-ptosis-epicanthus inversus syndrome (BPES); challenges for genetic counseling in female patients 2003 , 117A, 143-6		23
301	Role of the pleckstrin homology domain in intersectin-L Dbl homology domain activation of Cdc42 and signaling. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2003 , 1640, 61-8	4.9	16
300	DNA deamination enables direct PCR amplification of the cystatin B (CSTB) gene-associated dodecamer repeat expansion in myoclonus epilepsy type Unverricht-Lundborg. <i>Human Mutation</i> , 2003 , 22, 404-8	4.7	11
299	Specific BACE1 genotypes provide additional risk for late-onset Alzheimer disease in APOE epsilon 4 carriers 2003 , 119B, 44-7		33

298	Trapping and sequence analysis of 1138 putative exons from human chromosome 18. <i>Molecular Psychiatry</i> , 2003 , 8, 619-23	15.1	1
297	The TPTE gene family: cellular expression, subcellular localization and alternative splicing. <i>Gene</i> , 2003 , 323, 189-99	3.8	74
296	Identification of a novel member of the CLIC family, CLIC6, mapping to 21q22.12. <i>Gene</i> , 2003 , 320, 31-4	03.8	21
295	Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: Bipolar disorder. <i>American Journal of Human Genetics</i> , 2003 , 73, 49-62	11	353
294	Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. <i>American Journal of Human Genetics</i> , 2003 , 73, 34-48	11	985
293	Evolutionary discrimination of mammalian conserved non-genic sequences (CNGs). <i>Science</i> , 2003 , 302, 1033-5	33.3	164
292	The epilepsy, the protease inhibitor and the dodecamer: progressive myoclonus epilepsy, cystatin b and a 12-mer repeat expansion. <i>Cytogenetic and Genome Research</i> , 2003 , 100, 213-23	1.9	17
291	Mutation nomenclature. Current Protocols in Human Genetics, 2003, Chapter 7, Unit 7.13	3.2	25
290	Chromosome 21 and Down syndrome: the post-sequence era. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2003 , 68, 425-30	3.9	1
289	Mutations in the TMPRSS3 gene are a rare cause of childhood nonsyndromic deafness in Caucasian patients. <i>Journal of Molecular Medicine</i> , 2002 , 80, 124-31	5.5	50
288	Differential rates of frameshift alterations in four repeat sequences of hereditary nonpolyposis colorectal cancer tumors. <i>Human Genetics</i> , 2002 , 111, 284-9	6.3	12
287	Human chromosome 21 gene expression atlas in the mouse. <i>Nature</i> , 2002 , 420, 582-6	50.4	177
286	Numerous potentially functional but non-genic conserved sequences on human chromosome 21. <i>Nature</i> , 2002 , 420, 578-82	50.4	197
285	Initial sequencing and comparative analysis of the mouse genome. <i>Nature</i> , 2002 , 420, 520-62	50.4	5376
284	Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 10282-6	11.5	268
283	Search for the second Peutz-Jeghers syndrome locus: exclusion of the STK13, PRKCG, KLK10, and PSCD2 genes on chromosome 19 and the STK11IP gene on chromosome 2. <i>Cytogenetic and Genome Research</i> , 2002 , 97, 171-8	1.9	43
282	The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. <i>Human Molecular Genetics</i> , 2002 , 11, 2829-36	5.6	124
281	In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. <i>Blood</i> , 2002 , 99, 1364-72	2.2	305

(2001-2002)

280	A t(2;8) balanced translocation with breakpoints near the human HOXD complex causes mesomelic dysplasia and vertebral defects. <i>Genomics</i> , 2002 , 79, 493-8	4.3	40
279	Nineteen additional unpredicted transcripts from human chromosome 21. <i>Genomics</i> , 2002 , 79, 824-32	4.3	43
278	Language skills in children with velocardiofacial syndrome (deletion 22q11.2). <i>Journal of Pediatrics</i> , 2002 , 140, 753-8	3.6	65
277	Chromosome 21: a small land of fascinating disorders with unknown pathophysiology. <i>International Journal of Developmental Biology</i> , 2002 , 46, 89-96	1.9	9
276	Activation of multiple cryptic donor splice sites by the common congenital afibrinogenemia mutation, FGA IVS4 + 1 G>T. <i>Blood</i> , 2001 , 97, 1879-81	2.2	31
275	Parental origin of the deletion 22q11.2 and brain development in velocardiofacial syndrome: a preliminary study. <i>Archives of General Psychiatry</i> , 2001 , 58, 64-8		57
274	Isolation and characterization of the UBASH3A gene on 21q22.3 encoding a potential nuclear protein with a novel combination of domains. <i>Human Genetics</i> , 2001 , 108, 140-7	6.3	39
273	Molecular analysis of the fibrinogen gene cluster in 16 patients with congenital afibrinogenemia: novel truncating mutations in the FGA and FGG genes. <i>Human Genetics</i> , 2001 , 108, 237-40	6.3	58
272	The murine orthologue of the Golgi-localized TPTE protein provides clues to the evolutionary history of the human TPTE gene family. <i>Human Genetics</i> , 2001 , 109, 569-75	6.3	28
271	Novel missense mutations of TMPRSS3 in two consanguineous Tunisian families with non-syndromic autosomal recessive deafness. <i>Human Mutation</i> , 2001 , 18, 101-8	4.7	67
270	APECED mutations in the autoimmune regulator (AIRE) gene. Human Mutation, 2001, 18, 205-11	4.7	106
269	Nomenclature for the description of human sequence variations. <i>Human Genetics</i> , 2001 , 109, 121-4	6.3	766
268	Frequency of replication/transcription errors in (A)/(T) runs of human genes. <i>Human Genetics</i> , 2001 , 109, 40-7	6.3	24
267	Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. <i>Nature Genetics</i> , 2001 , 27, 59-63	36.3	159
266	Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. <i>Nature Cell Biology</i> , 2001 , 3, 927-32	23.4	312
265	An apparently dominant bipolar affective disorder (BPAD) locus on chromosome 20p11.2-q11.2 in a large Turkish pedigree. <i>European Journal of Human Genetics</i> , 2001 , 9, 39-44	5.3	34
264	Isolation and initial characterization of the mouse Dnmt3l gene. <i>Cytogenetic and Genome Research</i> , 2001 , 92, 122-6	1.9	57
263	Axonemal beta heavy chain dynein DNAH9: cDNA sequence, genomic structure, and investigation of its role in primary ciliary dyskinesia. <i>Genomics</i> , 2001 , 72, 21-33	4.3	41

262	From PREDs and open reading frames to cDNA isolation: revisiting the human chromosome 21 transcription map. <i>Genomics</i> , 2001 , 78, 46-54	4.3	33
261	Differential gene expression studies to explore the molecular pathophysiology of Down syndrome. <i>Brain Research Reviews</i> , 2001 , 36, 265-74		27
260	Chromosome 21: from sequence to applications. <i>Current Opinion in Genetics and Development</i> , 2001 , 11, 241-6	4.9	27
259	Gene for the human transmembrane-type protein tyrosine phosphatase H (PTPRH): genomic structure, fine-mapping and its exclusion as a candidate for Peutz-Jeghers syndrome. <i>Cytogenetic and Genome Research</i> , 2001 , 92, 213-6	1.9	6
258	2001,		4
257	Novel mutations of TMPRSS3 in four DFNB8/B10 families segregating congenital autosomal recessive deafness. <i>Journal of Medical Genetics</i> , 2001 , 38, 396-400	5.8	39
256	A cSNP Map and Database for Human Chromosome 21. <i>Genome Research</i> , 2001 , 11, 300-307	9.7	34
255	Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. <i>Human Mutation</i> , 2000 , 15, 7-12	4.7	1533
254	RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. <i>European Journal of Immunology</i> , 2000 , 30, 1884-93	6.1	155
253	OMIM passes the 1,000-disease-gene mark. <i>Nature Genetics</i> , 2000 , 25, 11	36.3	57
252	Mutations in GJB6 cause hidrotic ectodermal dysplasia. <i>Nature Genetics</i> , 2000 , 26, 142-4	36.3	227
251	Primary ciliary dyskinesia: a genome-wide linkage analysis reveals extensive locus heterogeneity. <i>European Journal of Human Genetics</i> , 2000 , 8, 109-18	5.3	123
250	Clouston hidrotic ectodermal dysplasia (HED): genetic homogeneity, presence of a founder effect in the French Canadian population and fine genetic mapping. <i>European Journal of Human Genetics</i> , 2000 , 8, 372-80	5.3	42
249	Genetic heterogeneity in schizophrenia: stratification of genome scan data using co-segregating related phenotypes. <i>Molecular Psychiatry</i> , 2000 , 5, 650-3	15.1	86
248	The DNA sequence of human chromosome 21. <i>Nature</i> , 2000 , 405, 311-9	50.4	911
247	Genomic structure of a copy of the human TPTE gene which encompasses 87 kb on the short arm of chromosome 21. <i>Human Genetics</i> , 2000 , 107, 127-31	6.3	23
246	Young children with Velo-Cardio-Facial syndrome (CATCH-22). Psychological and language phenotypes. <i>European Child and Adolescent Psychiatry</i> , 2000 , 9, 109-14	5.5	23
245	The autoimmune regulator protein has transcriptional transactivating properties and interacts with	5.4	168

(1999-2000)

244	Mice trisomic for a bacterial artificial chromosome with the single-minded 2 gene (Sim2) show phenotypes similar to some of those present in the partial trisomy 16 mouse models of Down syndrome. <i>Human Molecular Genetics</i> , 2000 , 9, 1853-64	5.6	79	
243	Patterns of meiotic recombination on the long arm of human chromosome 21. <i>Genome Research</i> , 2000 , 10, 1319-32	9.7	37	
242	No deleterious mutations in the FOXJ1 (alias HFH-4) gene in patients with primary ciliary dyskinesia (PCD). <i>Cytogenetic and Genome Research</i> , 2000 , 90, 119-22	1.9	25	
241	Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. <i>Genomics</i> , 2000 , 65, 293-8	4.3	221	
240	C21orf5, a novel human chromosome 21 gene, has a Caenorhabditis elegans ortholog (pad-1) required for embryonic patterning. <i>Genomics</i> , 2000 , 68, 30-40	4.3	17	
239	Refined localization of autosomal recessive nonsyndromic deafness DFNB10 locus using 34 novel microsatellite markers, genomic structure, and exclusion of six known genes in the region. <i>Genomics</i> , 2000 , 68, 22-9	4.3	25	
238	Isolation and characterization of a human chromosome 21q22.3 gene (WDR4) and its mouse homologue that code for a WD-repeat protein. <i>Genomics</i> , 2000 , 68, 71-9	4.3	33	
237	Cloning and characterization of a putative human glycerol 3-phosphate permease gene (SLC37A1 or G3PP) on 21q22.3: mutation analysis in two candidate phenotypes, DFNB10 and a glycerol kinase deficiency. <i>Genomics</i> , 2000 , 70, 190-200	4.3	28	
236	Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. <i>American Journal of Human Genetics</i> , 2000 , 67, 652-6	53 ¹¹	182	
235	Disease-causing mutations in the human genome. <i>European Journal of Pediatrics</i> , 2000 , 159 Suppl 3, S ²	173 _{‡-} 8	50	
234	The Mouse Brain Transcriptome by SAGE: Differences in Gene Expression between P30 Brains of the Partial Trisomy 16 Mouse Model of Down Syndrome (Ts65Dn) and Normals. <i>Genome Research</i> , 2000 , 10, 2006-2021	9.7	9	
233	The mouse brain transcriptome by SAGE: differences in gene expression between P30 brains of the partial trisomy 16 mouse model of Down syndrome (Ts65Dn) and normals. <i>Genome Research</i> , 2000 , 10, 2006-21	9.7	68	
232	Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion 2000 , 15, 7		6	
231	Altered spacing of promoter elements due to the dodecamer repeat expansion contributes to reduced expression of the cystatin B gene in EPM1. <i>Human Molecular Genetics</i> , 1999 , 8, 1791-8	5.6	40	
230	A high-resolution physical map of human chromosome 21p using yeast artificial chromosomes. <i>Genome Research</i> , 1999 , 9, 1059-73	9.7	18	
229	The 11 kb FGA deletion responsible for congenital afibrinogenaemia is mediated by a short direct repeat in the fibrinogen gene cluster. <i>European Journal of Human Genetics</i> , 1999 , 7, 897-902	5.3	21	
228	Linearization and purification of BAC DNA for the development of transgenic mice. <i>Transgenic Research</i> , 1999 , 8, 147-50	3.3	19	
227	A testis-specific gene, TPTE, encodes a putative transmembrane tyrosine phosphatase and maps to the pericentromeric region of human chromosomes 21 and 13, and to chromosomes 15, 22, and Y. Human Genetics 1999, 105, 399-409	6.3	58	

226	Structure of the human Lanosterol synthase gene and its analysis as a candidate for holoprosencephaly (HPE1). <i>Human Genetics</i> , 1999 , 105, 489-95	6.3	9
225	Mutation analyses of North American APS-1 patients. <i>Human Mutation</i> , 1999 , 13, 69-74	4.7	90
224	No evidence for linkage between schizophrenia and markers at chromosome 15q13-14. <i>American Journal of Medical Genetics Part A</i> , 1999 , 88, 109-12		51
223	Lack of linkage or association between schizophrenia and the polymorphic trinucleotide repeat within the KCNN3 gene on chromosome 1q21 1999 , 88, 348-351		28
222	The phenotypic spectrum of GLI3 morphopathies includes autosomal dominant preaxial polydactyly type-IV and postaxial polydactyly type-A/B; No phenotype prediction from the position of GLI3 mutations. <i>American Journal of Human Genetics</i> , 1999 , 65, 645-55	11	149
221	Isolation and characterization of the mouse Aire gene. <i>Biochemical and Biophysical Research Communications</i> , 1999 , 255, 483-90	3.4	54
220	Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. <i>Biochemical and Biophysical Research Communications</i> , 1999 , 257, 821-5	3.4	229
219	Deletion of the fibrinogen [correction of fibrogen] alpha-chain gene (FGA) causes congenital afibrogenemia. <i>Journal of Clinical Investigation</i> , 1999 , 103, 215-8	15.9	64
218	Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. <i>Nature Genetics</i> , 1998 , 20, 70-3	36.3	435
217	Recommendations for a nomenclature system for human gene mutations. Nomenclature Working Group. <i>Human Mutation</i> , 1998 , 11, 1-3	4.7	839
216	Independent occurrence of the novel Arg2163 to His mutation in the factor VIII gene in three unrelated families with haemophilia A with different phenotypes. <i>Human Mutation</i> , 1998 , 11, 334-334	4.7	
215	Increased levels of a chromosome 21-encoded tumour invasion and metastasis factor (TIAM1) mRNA in bone marrow of down syndrome children during the acute phase of AML(M7) 1998 , 23, 61-66		15
214	Isolation of the human BACH1 transcription regulator gene, which maps to chromosome 21q22.1. <i>Human Genetics</i> , 1998 , 102, 282-8	6.3	13
213	Analysis of the human Sonic Hedgehog coding and promoter regions in sacral agenesis, triphalangeal thumb, and mirror polydactyly. <i>Human Genetics</i> , 1998 , 102, 387-92	6.3	40
212	A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. <i>Human Genetics</i> , 1998 , 103, 428-34	6.3	192
211	APECED: a monogenic autoimmune disease providing new clues to self-tolerance. <i>Trends in Immunology</i> , 1998 , 19, 384-6		83
210	Identification of sequence variants and analysis of the role of the catechol-O-methyl-transferase gene in schizophrenia susceptibility. <i>Biological Psychiatry</i> , 1998 , 43, 425-31	7.9	93
209	A PCR amplification method reveals instability of the dodecamer repeat in progressive myoclonus epilepsy (EPM1) and no correlation between the size of the repeat and age at onset. <i>American Journal of Human Genetics</i> , 1998 , 62, 842-7	11	56

208	Loss of LKB1 kinase activity in Peutz-Jeghers syndrome, and evidence for allelic and locus heterogeneity. <i>American Journal of Human Genetics</i> , 1998 , 63, 1641-50	11	166
207	Identification and characterization of a novel cyclic nucleotide phosphodiesterase gene (PDE9A) that maps to 21q22.3: alternative splicing of mRNA transcripts, genomic structure and sequence. <i>Human Genetics</i> , 1998 , 103, 386-92	6.3	60
206	Characterization of a novel gene, C21orf2, on human chromosome 21q22.3 and its exclusion as the APECED gene by mutation analysis. <i>Genomics</i> , 1998 , 47, 64-70	4.3	20
205	Transcriptional map of the 2.5-Mb CBR-ERG region of chromosome 21 involved in Down syndrome. <i>Genomics</i> , 1998 , 48, 12-23	4.3	39
204	Construction of a 2.5-Mb integrated physical and gene map of distal 21q22.3. <i>Genomics</i> , 1998 , 49, 1-13	4.3	13
203	Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2). <i>Genomics</i> , 1998 , 48, 330-40	4.3	138
202	10 years of Genomics, chromosome 21, and Down syndrome. <i>Genomics</i> , 1998 , 51, 1-16	4.3	136
201	Two isoforms of a human intersectin (ITSN) protein are produced by brain-specific alternative splicing in a stop codon. <i>Genomics</i> , 1998 , 53, 369-76	4.3	86
200	A transmission disequilibrium and linkage analysis of D22S278 marker alleles in 574 families: further support for a susceptibility locus for schizophrenia at 22q12. Schizophrenia Collaborative Linkage Group for Chromosome 22. <i>Schizophrenia Research</i> , 1998 , 32, 115-21	3.6	41
199	Genomic structure, sequence, and refined mapping of the human intersectin gene (ITSN), which encompasses 250 kb on chromosome 21q22.1>q22.2. <i>Cytogenetic and Genome Research</i> , 1998 , 83, 218	3-20	12
198	Common mutations in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients of different origins. <i>Molecular Endocrinology</i> , 1998 , 12, 1112-9		133
197	Carney complex, Peutz-Jeghers syndrome, Cowden disease, and Bannayan-Zonana syndrome share cutaneous and endocrine manifestations, but not genetic loci. <i>Journal of Clinical Endocrinology and Metabolism</i> , 1998 , 83, 2972-6	5.6	53
196	Cloning of two human homologs of the Drosophila single-minded gene SIM1 on chromosome 6q and SIM2 on 21q within the Down syndrome chromosomal region. <i>Genome Research</i> , 1997 , 7, 615-24	9.7	57
195	Fortuitous detection of uniparental isodisomy of chromosome 6. <i>Journal of Medical Genetics</i> , 1997 , 34, 77-8	5.8	16
194	Immunochemical characterization of a novel mitochondrially located protein encoded by a nuclear gene within the DFNB8/10 critical region on 21q22.3. <i>Biochemical and Biophysical Research Communications</i> , 1997 , 238, 806-10	3.4	10
193	Cloning of a novel homeobox-containing gene, PKNOX1, and mapping to human chromosome 21q22.3. <i>Genomics</i> , 1997 , 41, 193-200	4.3	39
192	Cloning of a human RNA editing deaminase (ADARB1) of glutamate receptors that maps to chromosome 21q22.3. <i>Genomics</i> , 1997 , 41, 210-7	4.3	50
191	Cloning of a novel human neural cell adhesion molecule gene (NCAM2) that maps to chromosome region 21q21 and is potentially involved in Down syndrome. <i>Genomics</i> , 1997 , 43, 43-51	4.3	65

190	Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. <i>Genomics</i> , 1997 , 44, 309-20	4.3	168
189	Guidelines for human gene nomenclature (1997). HUGO Nomenclature Committee. <i>Genomics</i> , 1997 , 45, 468-71	4.3	91
188	Peutz-Jeghers syndrome: confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus, on 19q13.4. <i>American Journal of Human Genetics</i> , 1997 , 61, 1327-34	11	123
187	The locus for combined factor V-factor VIII deficiency (F5F8D) maps to 18q21, between D18S849 and D18S1103. <i>American Journal of Human Genetics</i> , 1997 , 61, 143-50	11	37
186	Meis1 and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface disrupted in oncoprotein E2a-Pbx1. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 14553-8	11.5	166
185	The SH3D1A gene maps to human chromosome 21q22.1>q22.2. <i>Cytogenetic and Genome Research</i> , 1997 , 78, 213-5	1.9	4
184	What is expanded in progressive myoclonus epilepsy?. <i>Nature Genetics</i> , 1997 , 17, 17	36.3	15
183	Mutation in GLI3 in postaxial polydactyly type A. <i>Nature Genetics</i> , 1997 , 17, 269-71	36.3	148
182	Positional cloning of the APECED gene. <i>Nature Genetics</i> , 1997 , 17, 393-8	36.3	1105
181	Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. <i>Nature</i> , 1997 , 386, 847-51	50.4	316
180	Localisation of a human homologue of the Drosophila mnb and rat Dyrk genes to chromosome 21q22.2. <i>Human Genetics</i> , 1997 , 99, 262-5	6.3	17
179	Isolation of a human gene (HES1) with homology to an Escherichia coli and a zebrafish protein that maps to chromosome 21q22.3. <i>Human Genetics</i> , 1997 , 99, 616-23	6.3	23
178	Localization of a novel human RNA-editing deaminase (hRED2 or ADARB2) to chromosome 10p15. Human Genetics, 1997 , 100, 398-400	6.3	15
177	A large family with subtelomeric translocation t(18;21)(q23;q22.1) and molecular breakpoint in the Down syndrome critical region. <i>Human Genetics</i> , 1997 , 100, 669-75	6.3	16
176	A method for the extraction of genomic DNA from human brain tissue fixed and stored in formalin for many years. <i>Acta Neuropathologica</i> , 1997 , 93, 408-13	14.3	20
175	Laryngeal atresia type III (glottic web) with 22q11.2 microdeletion: Report of three patients 1997 , 70, 130-133		50
174	Familial translocation t(Y;15)(q12;p11) and de novo deletion of the Prader-Willi syndrome (PWS) critical region on 15q11-q13. <i>American Journal of Medical Genetics Part A</i> , 1997 , 70, 222-8		10
173	The gene for autosomal dominant hidrotic ectodermal dysplasia (Clouston syndrome) in a large Indian family maps to the 13q11-q12.1 pericentromeric region. <i>American Journal of Medical Genetics Part A</i> , 1997 , 71, 80-6		27

172	Analysis of mutations and chromosomal localisation of the gene encoding RFX5, a novel transcription factor affected in major histocompatibility complex class II deficiency. <i>Human Mutation</i> , 1997 , 10, 430-5	4.7	20
171	Cloning of 559 potential exons of genes of human chromosome 21 by exon trapping. <i>Genome Research</i> , 1996 , 6, 747-60	9.7	40
170	The gene for human U2 snRNP auxiliary factor small 35-kDa subunit (U2AF1) maps to the progressive myoclonus epilepsy (EPM1) critical region on chromosome 21q22.3. <i>Genomics</i> , 1996 , 33, 298-300	4.3	10
169	Mapping of the gene for the p60 subunit of the human chromatin assembly factor (CAF1A) to the Down syndrome region of chromosome 21. <i>Genomics</i> , 1996 , 33, 309-12	4.3	11
168	Cloning the cDNA of human PWP2, which encodes a protein with WD repeats and maps to 21q22.3. <i>Genomics</i> , 1996 , 35, 321-7	4.3	11
167	Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter. <i>Genomics</i> , 1996 , 35, 620-4	4.3	5
166	Cloning of a human homolog of the Drosophila enhancer of zeste gene (EZH2) that maps to chromosome 21q22.2. <i>Genomics</i> , 1996 , 38, 30-7	4.3	50
165	The human lanosterol synthase gene maps to chromosome 21q22.3. <i>Human Genetics</i> , 1996 , 97, 620-4	6.3	13
164	The human genome project and its impact in medicine. <i>European Review</i> , 1996 , 4, 415	0.3	
163	The 21q22.1 STS marker, VN02 (EST00541 cDNA), is part of the 3' sequence of the human Na+/myo-inositol cotransporter (SLC5A3) gene. <i>Cytogenetic and Genome Research</i> , 1996 , 73, 77-8	1.9	4
162	Early-onset dementias: clinical, neuropathological and genetic characteristics. <i>Acta Neuropathologica</i> , 1996 , 91, 451-65	14.3	19
161	YAC and cosmid FISH mapping of an unbalanced chromosomal translocation causing partial trisomy 21 and Down syndrome. <i>Human Genetics</i> , 1996 , 98, 460-6	6.3	17
160	Cloning of the cDNA for a human homolog of the rat PEP-19 gene and mapping to chromosome 21q22.2-q22.3. <i>Human Genetics</i> , 1996 , 98, 672-7	6.3	18
159	A combined analysis of D22S278 marker alleles in affected sib-pairs: support for a susceptibility locus for schizophrenia at chromosome 22q12. Schizophrenia Collaborative Linkage Group (Chromosome 22). <i>American Journal of Medical Genetics Part A</i> , 1996 , 67, 40-5		180
158	Additional support for schizophrenia linkage on chromosomes 6 and 8: a multicenter study. Schizophrenia Linkage Collaborative Group for Chromosomes 3, 6 and 8. <i>American Journal of Medical Genetics Part A</i> , 1996 , 67, 580-94		147
157	An autosomal dominant triphalangeal thumb: polysyndactyly syndrome with variable expression in a large Indian family maps to 7q36. <i>American Journal of Medical Genetics Part A</i> , 1996 , 66, 209-15		24
156	Two novel mutations affecting mRNA splicing of the neurofibromatosis type 1 (NF1) gene. <i>Human Mutation</i> , 1996 , 7, 172-5	4.7	13
155	Complex genetic predisposition to cancer in an extended HNPCC family with an ancestral hMLH1 mutation. <i>Journal of Medical Genetics</i> , 1996 , 33, 636-40	5.8	22

154	A gene which causes severe ocular alterations and occipital encephalocele (Knobloch syndrome) is mapped to 21q22.3. <i>Human Molecular Genetics</i> , 1996 , 5, 843-7	5.6	62
153	The haemophilia A mutation search test and resource site, home page of the factor VIII mutation database: HAMSTeRS. <i>Nucleic Acids Research</i> , 1996 , 24, 100-2	20.1	22
152	Mapping by sequence homology. European Journal of Human Genetics, 1996, 4, 247-9	5.3	1
151	The human lanosterol synthase gene maps to chromosome 21q22.3. <i>Human Genetics</i> , 1996 , 97, 620-62	4 6.3	
150	Structure of the human CRFB4 gene: Comparison with its IFNAR neighbor. <i>Journal of Molecular Evolution</i> , 1995 , 41, 338-344	3.1	13
149	Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. <i>Nature Genetics</i> , 1995 , 10, 119-21	36.3	523
148	Single-minded and Down syndrome?. <i>Nature Genetics</i> , 1995 , 10, 9-10	36.3	73
147	Schizophrenia susceptibility and chromosome 6p24-22. <i>Nature Genetics</i> , 1995 , 11, 235-6	36.3	113
146	Characterization of cDNA clones containing CCA trinucleotide repeats derived from human brain. <i>Somatic Cell and Molecular Genetics</i> , 1995 , 21, 279-84		11
145	The tetranucleotide repeat polymorphism D21S1245 demonstrates hypermutability in germline and somatic cells. <i>Human Molecular Genetics</i> , 1995 , 4, 1193-9	5.6	54
144	Localization of 102 exons to a 2.5 Mb region involved in Down syndrome. <i>Human Molecular Genetics</i> , 1995 , 4, 1305-11	5.6	41
143	Localization of a human homolog of the mouse Tiam-1 gene to chromosome 21q22.1. <i>Genomics</i> , 1995 , 30, 123-7	4.3	10
142	Mapping of the human transcription factor GABPA (E4TF1-60) gene to chromosome 21. <i>Genomics</i> , 1995 , 28, 119-22	4.3	7
141	Cloning of the cDNA for the human ATP synthase OSCP subunit (ATP5O) by exon trapping and mapping to chromosome 21q22.1-q22.2. <i>Genomics</i> , 1995 , 28, 470-6	4.3	18
140	Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1995 , 92, 7612-6	11.5	529
139	Cytogenetic and molecular analysis of a ring (21) in a patient with partial trisomy 21 and megakaryocytic leukemia. <i>American Journal of Medical Genetics Part A</i> , 1995 , 57, 527-36		16
138	Duplication and loss of chromosome 21 in two children with Down syndrome and acute leukemia. <i>American Journal of Medical Genetics Part A</i> , 1995 , 59, 174-81		17
137	Follow-up report of potential linkage for schizophrenia on chromosome 22q: Part 3. <i>American Journal of Medical Genetics Part A</i> , 1995 , 60, 172-3		74

136	Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. <i>American Journal of Medical Genetics Part A</i> , 1995 , 60, 252-60		225	
135	Two-dimensional electrophoresis southern transfer method for detecting human genome variability using a LINE-1 sequence probe. <i>Analytical Biochemistry</i> , 1995 , 227, 319-27	3.1	0	
134	Molecular etiology of factor VIII deficiency in hemophilia A. <i>Human Mutation</i> , 1995 , 5, 1-22	4.7	110	
133	Molecular etiology of factor VIII deficiency in hemophilia A. <i>Advances in Experimental Medicine and Biology</i> , 1995 , 386, 19-34	3.6	10	
132	Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition. <i>Nucleic Acids Research</i> , 1994 , 22, 3511-33	20.1	79	
131	Exon skipping associated with A>G transition at +4 of the IVS33 splice donor site of the neurofibromatosis type 1 (NF1) gene. <i>Human Molecular Genetics</i> , 1994 , 3, 663-5	5.6	9	
130	Dinucleotide repeat polymorphism within ERCC5 gene. Human Molecular Genetics, 1994, 3, 214	5.6	5	
129	Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition. <i>Nucleic Acids Research</i> , 1994 , 22, 4851-68	20.1	52	
128	"Compensatory" uniparental disomy of chromosome 21 in two cases. <i>Journal of Medical Genetics</i> , 1994 , 31, 534-40	5.8	29	
127	Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells. <i>Human Molecular Genetics</i> , 1994 , 3, 1035-9	5.6	144	
126	Highly polymorphic repeat marker within the beta-amyloid precursor protein gene. <i>Human Genetics</i> , 1994 , 93, 85-6	6.3	2	
125	Discussion on mutation nomenclature. <i>Human Mutation</i> , 1994 , 4, 166	4.7	9	
124	Homologous loci DXYS156X and DXYS156Y contain a polymorphic pentanucleotide repeat (TAAAA)n and map to human X and Y chromosomes. <i>Human Mutation</i> , 1994 , 4, 208-11	4.7	34	
123	No uniparental disomy for chromosome 3 in Brachmann-De Lange syndrome. <i>American Journal of Medical Genetics Part A</i> , 1994 , 49, 133-5		12	
122	Biparental inheritance of chromosome 21 polymorphic markers indicates that some Robertsonian translocations t(21;21) occur postzygotically. <i>American Journal of Medical Genetics Part A</i> , 1994 , 49, 36:	3-8	19	
121	Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12-q13.1: Part 1. <i>American Journal of Medical Genetics Part A</i> , 1994 , 54, 36-43		321	
120	Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12-q13.1: Part 2. <i>American Journal of Medical Genetics Part A</i> , 1994 , 54, 44-50		124	
119	Report from the Maryland Epidemiology Schizophrenia Linkage Study: no evidence for linkage between schizophrenia and a number of candidate and other genomic regions using a complex dominant model. American Journal of Medical Genetics Part A 1994, 54, 345-53		23	

118	Determination of gene dosage by a quantitative adaptation of the polymerase chain reaction (gd-PCR): rapid detection of deletions and duplications of gene sequences. <i>Genomics</i> , 1994 , 21, 304-10	4.3	44
117	Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. <i>Journal of Nervous and Mental Disease</i> , 1994 , 182, 476-8	1.8	340
116	DNA polymorphisms in the 3' untranslated region of genes on human chromosome 21. <i>Genomics</i> , 1993 , 15, 98-102	4.3	6
115	Spectrum of mutations in CRM-positive and CRM-reduced hemophilia A. <i>Genomics</i> , 1993 , 15, 392-8	4.3	49
114	A novel zinc finger cDNA with a polymorphic pentanucleotide repeat (ATTTT)n maps on human chromosome 19p. <i>Genomics</i> , 1993 , 15, 621-5	4.3	5
113	A contiguous physical map of the pericentromeric region of chromosome 21q between D21Z1 and D21S13E. <i>Genomics</i> , 1993 , 15, 626-30	4.3	9
112	Severe hemophilia A in a female by cryptic translocation: order and orientation of factor VIII within Xq28. <i>Genomics</i> , 1993 , 16, 20-5	4.3	21
111	The CEPH consortium linkage map of human chromosome 13. <i>Genomics</i> , 1993 , 16, 486-96	4.3	7
110	A linkage map of human chromosome 21:43 PCR markers at average intervals of 2.5 cM. <i>Genomics</i> , 1993 , 16, 562-71	4.3	62
109	Novel triplet repeat containing genes in human brain: cloning, expression, and length polymorphisms. <i>Genomics</i> , 1993 , 16, 572-9	4.3	183
108	Paternal nondisjunction in trisomy 21: excess of male patients. <i>Human Molecular Genetics</i> , 1993 , 2, 1691	-5 .6	66
107	Polymorphic dinucleotide repeats at the D3S1417, D3S1418 and D12S271 loci. <i>Human Molecular Genetics</i> , 1993 , 2, 1325	5.6	
106	Unbalanced translocation, t(18;21), detected by fluorescence in situ hybridization (FISH) in a child with 18q- syndrome and a ring chromosome 21. <i>American Journal of Medical Genetics Part A</i> , 1993 , 46, 647-51		3
	40, 047-51		
105	Linkage mapping of the cystathionine beta-synthase (CBS) gene on human chromosome 21 using a DNA polymorphism in the 3' untranslated region. <i>Human Genetics</i> , 1993 , 90, 566-8	6.3	19
105	Linkage mapping of the cystathionine beta-synthase (CBS) gene on human chromosome 21 using a	6.3	19
	Linkage mapping of the cystathionine beta-synthase (CBS) gene on human chromosome 21 using a DNA polymorphism in the 3' untranslated region. <i>Human Genetics</i> , 1993 , 90, 566-8 D21S210: a highly polymorphic (GT)n marker closely linked to the beta-amyloid protein precursor		
104	Linkage mapping of the cystathionine beta-synthase (CBS) gene on human chromosome 21 using a DNA polymorphism in the 3' untranslated region. <i>Human Genetics</i> , 1993 , 90, 566-8 D21S210: a highly polymorphic (GT)n marker closely linked to the beta-amyloid protein precursor (APP) gene. <i>Human Genetics</i> , 1993 , 91, 87-8 Mitotic errors in somatic cells cause trisomy 21 in about 4.5% of cases and are not associated with	6.3	6

100	Hemophilia A due to mutations that create new N-glycosylation sites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1992 , 89, 4933-7	11.5	46
99	Molecular genetic analysis in autosomal dominant keratoconus. <i>Cornea</i> , 1992 , 11, 302-8	3.1	68
98	Detection of mutations in the factor VIII gene using single-stranded conformational polymorphism (SSCP). <i>Genomics</i> , 1992 , 13, 909-11	4.3	19
97	Localization of the human gene for mu-crystallin to chromosome 16p. <i>Genomics</i> , 1992 , 14, 1115-6	4.3	7
96	Uniparental isodisomy due to duplication of chromosome 21 occurring in somatic cells monosomic for chromosome 21. <i>Genomics</i> , 1992 , 13, 269-74	4.3	54
95	D21S215 is a (GT)n polymorphic marker close to centromeric alphoid sequences on chromosome 21. <i>Genomics</i> , 1992 , 13, 1365-7	4.3	14
94	Linkage mapping of the AML1 gene on human chromosome 21 using a DNA polymorphism in the 3' untranslated region. <i>Genomics</i> , 1992 , 14, 506-7	4.3	4
93	Linkage mapping of the carbonyl reductase (CBR) gene on human chromosome 21 using a DNA polymorphism in the 3' untranslated region. <i>Genomics</i> , 1992 , 13, 447-8	4.3	7
92	Dinucleotide repeat (GT)n markers on chromosome 21. <i>Genomics</i> , 1992 , 14, 818-9	4.3	10
91	Cloning and linkage mapping of three polymorphic tetranucleotide (TAAA)n repeats on human chromosome 21. <i>Genomics</i> , 1992 , 14, 1071-5	4.3	5
90	Chromosome 21 genetic linkage data set based on CEPH pedigrees. <i>Cytogenetic and Genome Research</i> , 1992 , 59, 86-7	1.9	1
89	Continuum of overlapping clones spanning the entire human chromosome 21q. <i>Nature</i> , 1992 , 359, 380-	750.4	394
88	Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. <i>Nature Genetics</i> , 1992 , 1, 218-21	36.3	652
87	Clinical, biochemical, and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes. <i>American Journal of Medical Genetics Part A</i> , 1992 , 42, 127-34		73
86	Mitochondrial DNA mutation and heteroplasmy in type I Leber hereditary optic neuropathy. <i>American Journal of Medical Genetics Part A</i> , 1992 , 42, 173-9		36
85	Molecular characterization of mild-to-moderate hemophilia A: detection of the mutation in 25 of 29 patients by denaturing gradient gel electrophoresis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1991 , 88, 8307-11	11.5	121
84	A 48,XXY,+21 Down syndrome patient with additional paternal X and maternal 21. <i>Human Genetics</i> , 1991 , 87, 54-6	6.3	23
83	Linkage mapping of D21S171 to the distal long arm of human chromosome 21 using a polymorphic (AC)n dinucleotide repeat. <i>Human Genetics</i> , 1991 , 87, 401-4	6.3	12

82	The COL6A1 and COL6A2 genes exist as a gene cluster and detect highly informative DNA polymorphisms in the telomeric region of human chromosome 21q. <i>Human Genetics</i> , 1991 , 87, 162-6	6.3	26
81	An MspI polymorphism at the MX1 locus in 21q22.3. <i>Nucleic Acids Research</i> , 1991 , 19, 5451	20.1	1
80	Parental origin of the extra chromosome in trisomy 21 as indicated by analysis of DNA polymorphisms. Down Syndrome Collaborative Group. <i>New England Journal of Medicine</i> , 1991 , 324, 872	- 6 9.2	216
79	Alphoid DNA polymorphisms for chromosome 21 can be distinguished from those of chromosome 13 using probes homologous to both. <i>Genomics</i> , 1991 , 9, 141-6	4.3	32
78	Yeast artificial chromosome vectors for efficient clone manipulation and mapping. <i>Genomics</i> , 1991 , 10, 505-8	4.3	40
77	Molecular heterogeneity of beta-thalassemia in mestizo Mexicans. <i>Genomics</i> , 1991 , 11, 474	4.3	11
76	A genetic linkage map of 27 markers on human chromosome 21. <i>Genomics</i> , 1991 , 9, 407-19	4.3	78
75	Nonhomologous recombination in the human genome: deletions in the human factor VIII gene. <i>Genomics</i> , 1991 , 10, 94-101	4.3	78
74	Linkage mapping of highly informative DNA polymorphisms within the human interferon-alpha receptor gene on chromosome 21. <i>Genomics</i> , 1991 , 11, 573-6	4.3	30
73	Clinical, cytogenetic, and molecular genetic characterization of two unrelated patients with different duplications of 21q. <i>American Journal of Medical Genetics Part A</i> , 1990 , 7, 104-9		6
72	Clinical, cytogenetic, and molecular evaluation of a patient with partial trisomy 21 (21q11-q22) lacking the classical Down syndrome phenotype. <i>American Journal of Medical Genetics Part A</i> , 1990 , 7, 110-4		5
71	The mapping and sequencing of the human genome. Southern Medical Journal, 1990, 83, 876-8	0.6	1
70	A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. <i>Nature</i> , 1990 , 346, 366-9	50.4	387
69	Apolipoprotein A1 Baltimore (Arg10Leu), a new ApoA1 variant. <i>Human Genetics</i> , 1990 , 84, 439-45	6.3	11
68	MspI polymorphic site in intron 22 of the factor VIII gene in the Japanese population. <i>Human Genetics</i> , 1990 , 84, 214-5	6.3	5
67	Phylogeny of human beta-globin haplotypes and its implications for recent human evolution. <i>American Journal of Physical Anthropology</i> , 1990 , 81, 113-30	2.5	60
66	Pvull and XhoI/EcoRV polymorphisms adjacent to the alpha A-crystallin (CRYA1) gene on human chromosome 21. <i>Nucleic Acids Research</i> , 1990 , 18, 4300	20.1	1
65	Two patients with cystic fibrosis, nonsense mutations in each cystic fibrosis gene, and mild pulmonary disease. <i>New England Journal of Medicine</i> , 1990 , 323, 1685-9	59.2	146

64	Linkage analysis of the human HMG14 gene on chromosome 21 using a GT dinucleotide repeat as polymorphic marker. <i>Genomics</i> , 1990 , 7, 136-8	4.3	59
63	An alpha satellite DNA polymorphism specific for the centromeric region of chromosome 13. <i>Genomics</i> , 1990 , 7, 110-4	4.3	15
62	Characterization of mutations in the factor VIII gene by direct sequencing of amplified genomic DNA. <i>Genomics</i> , 1990 , 6, 65-71	4.3	80
61	YAC cloning of DNA embedded in an agarose matrix. <i>Gene Analysis Techniques</i> , 1990 , 7, 114-8		3
60	Linkage mapping of the highly informative DNA marker D21S156 to human chromosome 21 using a polymorphic GT dinucleotide repeat. <i>Genomics</i> , 1990 , 8, 400-2	4.3	28
59	Use of denaturing gradient gel electrophoresis to detect point mutations in the factor VIII gene. <i>Genomics</i> , 1990 , 6, 293-301	4.3	73
58	Physical mapping by PFGE localizes the COL3A1 and COL5A2 genes to a 35-kb region on human chromosome 2. <i>Genomics</i> , 1990 , 8, 407-10	4.3	17
57	Gene defects in beta-thalassemia and their prenatal diagnosis. <i>Annals of the New York Academy of Sciences</i> , 1990 , 612, 1-14	6.5	22
56	Approaches to the Diagnosis of Renal Genetic Disorders Using DNA Analysis 1990 , 53-63		
55	Two Pstl DNA polymorphisms adjacent to the human gene for the interferon-induced p78 protein (MX1 gene). <i>Nucleic Acids Research</i> , 1989 , 17, 7546	20.1	3
54	Diagnosis of genetic disorders at the DNA level. New England Journal of Medicine, 1989, 320, 153-63	59.2	89
53	Microdeletion in the X-chromosome and prenatal diagnosis in a family with Norrie disease. <i>American Journal of Medical Genetics Part A</i> , 1989 , 33, 485-8		40
52	Mild hemophilia A resulting from Arg-to-Leu substitution in exon 26 of the factor VIII gene. <i>Human Genetics</i> , 1989 , 81, 335-8	6.3	18
51	A genetic linkage map of 17 markers on human chromosome 21. <i>Genomics</i> , 1989 , 4, 579-91	4.3	75
50	Molecular genetic approach to the characterization of the "Down syndrome region" of chromosome 21. <i>Genomics</i> , 1989 , 5, 325-31	4.3	178
49	Characterization of a nondeleterious L1 insertion in an intron of the human factor VIII gene and further evidence of open reading frames in functional L1 elements. <i>Genomics</i> , 1989 , 4, 290-6	4.3	58
48	A highly polymorphic locus cloned from the breakpoint of a chromosome 11p13 deletion associated with the WAGR syndrome. <i>Genomics</i> , 1989 , 5, 880-93	4.3	17
47	Construction of human chromosome 21-specific yeast artificial chromosomes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1989 , 86, 9991-5	11.5	73

46	Molecular characterization of beta-globin gene mutations in patients with beta-thalassaemia intermedia in south China. <i>British Journal of Haematology</i> , 1988 , 70, 357-61	4.5	16
45	DNA polymorphism haplotypes of the human apolipoprotein APOA1-APOC3-APOA4 gene cluster. <i>Human Genetics</i> , 1988 , 80, 265-73	6.3	65
44	Restriction endonuclease mapping of six novel deletions of the factor VIII gene in hemophilia A. <i>Human Genetics</i> , 1988 , 80, 143-8	6.3	20
43	Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. <i>Nature</i> , 1988 , 332, 164-6	50.4	706
42	The molecular basis of hemophilia A in man. <i>Trends in Genetics</i> , 1988 , 4, 233-7	8.5	60
41	Macrorestriction mapping of COL4A1 and COL4A2 collagen genes on human chromosome 13q34. <i>Genomics</i> , 1988 , 3, 256-63	4.3	20
40	Mild hemophilia A associated with a cryptic donor splice site mutation in intron 4 of the factor VIII gene. <i>Genomics</i> , 1988 , 2, 32-6	4.3	18
39	Beta-thalassemia in China: a systematic molecular characterization of beta-thalassemia mutations. <i>Hemoglobin</i> , 1988 , 12, 621-8	0.6	6
38	A DNA polymorphism with KpnI of the human liver-type phosphofructokinase (PFKL) gene. <i>Nucleic Acids Research</i> , 1988 , 16, 9060	20.1	2
37	The molecular genetics of hemophilia A and B in man. Factor VIII and factor IX deficiency. <i>Advances in Human Genetics</i> , 1988 , 17, 27-59		10
36	A novel form of human polymorphism involving the hDHFR-psi 1 pseudogene identifies three RFLPs. <i>Nucleic Acids Research</i> , 1987 , 15, 5501	20.1	2
35	An Xba I polymorphism 3' to the human erythropoietin (EPO) gene. <i>Nucleic Acids Research</i> , 1987 , 15, 67	68 0.1	8
34	RFLP for the human lipoprotein lipase (LPL) gene: HindIII. <i>Nucleic Acids Research</i> , 1987 , 15, 6763	20.1	50
33	MspI polymorphism in the 3' flanking region of the human factor VIII gene. <i>Nucleic Acids Research</i> , 1987 , 15, 6312	20.1	22
32	Characterization of five partial deletions of the factor VIII gene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1987 , 84, 3772-6	11.5	85
31	Hemophilia A persistence and gene mutational vulnerability. <i>Hospital Practice (1995)</i> , 1987 , 22, 93-5, 99-102	2.2	1
30	beta-Amyloid gene is not present in three copies in autopsy-validated Alzheimer's disease. <i>Genomics</i> , 1987 , 1, 307-12	4.3	19
29	Multipoint mapping studies of six loci on chromosome 11. <i>Human Heredity</i> , 1987 , 37, 94-101	1.1	7

Farber disease: pathologic diagnosis in sibs with phenotypic variability. <i>American Journal of Medical Genetics Part A</i> , 1987 , 3, 233-41		32
The same "TATA" box beta-thalassemia mutation in Chinese and US blacks: another example of independent origins of mutation. <i>Human Genetics</i> , 1986 , 74, 162-4	6.3	39
Familial isolated aniridia associated with a translocation involving chromosomes 11 and 22 [t(11;22)(p13;q12.2)]. <i>Human Genetics</i> , 1986 , 72, 297-302	6.3	51
Recurrent mutations in haemophilia A give evidence for CpG mutation hotspots. <i>Nature</i> , 1986 , 324, 380)-3 0.4	230
DNA polymorphic sites in the human ApoAI-CIII-AIV cluster: Taq I and Ava I. <i>Nucleic Acids Research</i> , 1986 , 14, 1924	20.1	15
PvuII polymorphic site upstream to the human ApoCIII gene. <i>Nucleic Acids Research</i> , 1986 , 14, 5571	20.1	16
Linkage map of the short arm of human chromosome 11: location of the genes for catalase, calcitonin, and insulin-like growth factor II. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1985 , 82, 5064-7	11.5	8o
Analysis of DNA haplotypes suggests a genetic predisposition to trisomy 21 associated with DNA sequences on chromosome 21. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1985 , 82, 3360-4	11.5	41
The human gene encoding insulin-like growth factor I is located on chromosome 12. <i>Human Genetics</i> , 1985 , 69, 157-60	6.3	63
DNA polymorphism and molecular pathology of the human globin gene clusters. <i>Human Genetics</i> , 1985 , 69, 1-14	6.3	223
Germ-line chromosomal localization of genes in chromosome 11p linkage: parathyroid hormone, beta-globin, c-Ha-ras-1, and insulin. <i>Somatic Cell and Molecular Genetics</i> , 1985 , 11, 197-202		16
Hemophilia A. Detection of molecular defects and of carriers by DNA analysis. <i>New England Journal of Medicine</i> , 1985 , 313, 842-8	59.2	175
Linkage map on chromosome 21q and the association of a DNA haplotype with a propensity to nondisjunction and trisomy 21. <i>Annals of the New York Academy of Sciences</i> , 1985 , 450, 95-107	6.5	5
Restriction site polymorphism in the phosphoglycerate kinase gene on the X chromosome. <i>Human Genetics</i> , 1984 , 66, 217-9	6.3	23
Phenotypic variability in siblings with Farber disease. <i>Journal of Pediatrics</i> , 1984 , 104, 406-9	3.6	52
beta-Thalassemia in American Blacks: novel mutations in the "TATA" box and an acceptor splice site. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1984 , 81, 1154-8	11.5	168
Molecular heterogeneity of inherited antithrombin III deficiency. <i>New England Journal of Medicine</i> , 1983 , 308, 1549-52	59.2	105
Prenatal diagnosis using DNA polymorphisms. Report on 95 pregnancies at risk for sickle-cell disease or beta-thalassemia. <i>New England Journal of Medicine</i> , 1983 , 308, 1054-8	59.2	126
	The same "TATA" box beta-thalassemia mutation in Chinese and US blacks: another example of independent origins of mutation. Human Genetics, 1986, 74, 162-4 Familial isolated aniridia associated with a translocation involving chromosomes 11 and 22 [t(11;22)(p13;q12.2)]. Human Genetics, 1986, 72, 297-302 Recurrent mutations in haemophilia A give evidence for CpG mutation hotspots. Nature, 1986, 324, 380 [t(11;22)(p13;q12.2)]. Human Genetics, 1986, 122, 297-302 Recurrent mutations in haemophilia A give evidence for CpG mutation hotspots. Nature, 1986, 324, 380 [t(11;22)(p13;q12.2)]. Human ApoAl-Clll-AlV cluster: Taq I and Ava I. Nucleic Acids Research, 1986, 14, 1924 Pvull polymorphic site upstream to the human ApoClll gene. Nucleic Acids Research, 1986, 14, 5571 Linkage map of the short arm of human chromosome 11: location of the genes for catalase, calcitonin, and insulin-like growth factor II. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 3064-7 Analysis of DNA haplotypes suggests a genetic predisposition to trisomy 21 associated with DNA sequences on chromosome 21. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 3360-4 The human gene encoding insulin-like growth factor I is located on chromosome 12. Human Genetics, 1985, 89, 157-60 DNA polymorphism and molecular pathology of the human globin gene clusters. Human Genetics, 1985, 69, 157-60 DNA polymorphism and molecular defects and of carriers by DNA analysis. New England Journal of Medicine, 1985, 313, 842-8 Linkage map on chromosome 21q and the association of a DNA haplotype with a propensity to nondisjunction and trisomy 21. Annals of the New York Academy of Sciences, 1985, 450, 95-107 Restriction site polymorphism in the phosphoglycerate kinase gene on the X chromosome. Human Genetics, 1984, 66, 217-9 Phenotypic variability in siblings with Farber disease. Journal of Pediatrics, 1984, 104, 406-9 beta-Thalassemia in American Blacks: novel mutations in the "TA	The same "TATA" box beta-thalassemia mutation in Chinese and US blacks: another example of independent origins of mutation. <i>Human Genetics</i> , 1986, 74, 162-4 Familial isolated aniridia associated with a translocation involving chromosomes 11 and 22 [t[11;22)(p13;q12.2)]. <i>Human Genetics</i> , 1986, 72, 297-302 Recurrent mutations in haemophilia A give evidence for CpG mutation hotspots. <i>Nature</i> , 1986, 324, 380-30.4 DNA polymorphic sites in the human ApoAl-Cill-AlV cluster: Taq I and Ava I. <i>Nucleic Acids Research</i> , 1986, 14, 1924 DNA polymorphic site upstream to the human ApoCill gene. <i>Nucleic Acids Research</i> , 1986, 14, 5571 Linkage map of the short arm of human chromosome 11: location of the genes for catalase, calcitonin, and insulin-like growth factor II. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1985, 82, 5064-7 Analysis of DNA haplotypes suggests a genetic predisposition to trisomy 21 associated with DNA sequences on chromosome 21. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1985, 82, 3360-4 The human gene encoding insulin-like growth factor I is located on chromosome 12. <i>Human Genetics</i> , 1985, 69, 157-60 DNA polymorphism and molecular pathology of the human globin gene clusters. <i>Human Genetics</i> , 1985, 69, 157-60 Hemophilia A. Detection of molecular defects and of carriers by DNA analysis. <i>New England Journal of Medicine</i> , 1985, 313, 842-8 Linkage map on chromosome 21q and the association of a DNA haplotype with a propensity to nondisjunction and trisomy 21. <i>Annals of the New York Academy of Sciences</i> , 1985, 450, 95-107 Restriction site polymorphism in the phosphoglycerate kinase gene on the X chromosome. <i>Human Genetics</i> , 1984, 66, 217-9 Phenotypic variability in siblings with Farber disease. <i>Journal of Pediatrics</i> , 1984, 104, 406-9 3.6 Phenotypic variability in siblings with Farber disease. <i>Journal of Pediatrics</i> , 1984, 104, 406-9 3.6 Prenatal diagnosis using DNA polymorphisms. Report on 95 pregnancies at

10	Evidence for multiple origins of the beta E-globin gene in Southeast Asia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1982 , 79, 6608-11	11.5	109
9	Genetic diseases: diagnosis by restriction endonuclease analysis. <i>Journal of Pediatrics</i> , 1982 , 100, 845-56	3.6	51
8	Linkage of beta-thalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in human beta-globin gene cluster. <i>Nature</i> , 1982 , 296, 627-31	50.4	866
7	Abnormal RNA processing due to the exon mutation of beta E-globin gene. <i>Nature</i> , 1982 , 300, 768-9	50.4	256
6	Uniparental Disomy for Individual Human Chromosomes: Review of Cases49-132		
5	Mechanisms Generating Uniparental Disomy and Genomic Imprinting Disorders25-48		
4	Detection of Uniparental Disomy and Imprinting by DNA Analysis13-24		
3	Correction: Passive and active DNA methylation and the interplay with genetic variation in gene regulation. $ELife$,2,	8.9	8
2	Genomic, Proteomic and Phenotypic Heterogeneity in HeLa Cells across Laboratories: Implications for Reproducibility of Research Results		4
1	The complete sequence of a human genome		58