Jayashree Kalpathy-Cramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1872063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging, 2012, 30, 1323-1341.	1.0	5,126
2	The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 2015, 34, 1993-2024.	5.4	3,589
3	Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmology, 2018, 136, 803.	1.4	442
4	Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro-Oncology, 2015, 17, 1188-98.	0.6	346
5	Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19059-19064.	3.3	303
6	Residual Convolutional Neural Network for the Determination of <i>IDH</i> Status in Low- and High-Grade Gliomas from MR Imaging. Clinical Cancer Research, 2018, 24, 1073-1081.	3.2	297
7	Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. American Journal of Neuroradiology, 2018, 39, 208-216.	1.2	281
8	The RSNA Pediatric Bone Age Machine Learning Challenge. Radiology, 2019, 290, 498-503.	3.6	277
9	A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology, 2019, 291, 781-791.	3.6	241
10	Distributed deep learning networks among institutions for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 945-954.	2.2	227
11	Nomogram for Predicting the Benefit of Adjuvant Chemoradiotherapy for Resected Gallbladder Cancer. Journal of Clinical Oncology, 2011, 29, 4627-4632.	0.8	190
12	Introduction to Machine Learning, Neural Networks, and Deep Learning. Translational Vision Science and Technology, 2020, 9, 14.	1.1	146
13	Quantitative imaging biomarkers: A review of statistical methods for computer algorithm comparisons. Statistical Methods in Medical Research, 2015, 24, 68-106.	0.7	137
14	Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro-Oncology, 2019, 21, 1412-1422.	0.6	128
15	Advanced Magnetic Resonance Imaging of the Physical Processes in Human Glioblastoma. Cancer Research, 2014, 74, 4622-4637.	0.4	123
16	Variations of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Evaluation of Breast Cancer Therapy Response: A Multicenter Data Analysis Challenge. Translational Oncology, 2014, 7, 153-166.	1.7	120
17	Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. British Journal of Ophthalmology, 2019, 103, 580-584.	2.1	114
18	Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro-Oncology, 2020, 22, 1262-1275.	0.6	109

#	Article	IF	CITATIONS
19	Radiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging Features. Tomography, 2016, 2, 430-437.	0.8	108
20	Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity: Performance of the "i-ROP―System and Image Features Associated With Expert Diagnosis. Translational Vision Science and Technology, 2015, 4, 5.	1.1	105
21	Automated Assessment and Tracking of COVID-19 Pulmonary Disease Severity on Chest Radiographs Using Convolutional Siamese Neural Networks. Radiology: Artificial Intelligence, 2020, 2, e200079.	3.0	105
22	PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. Journal of Medical Imaging, 2018, 5, 1.	0.8	98
23	Assessing the Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging. Radiology: Artificial Intelligence, 2021, 3, e200267.	3.0	96
24	Expert Diagnosis of Plus Disease in Retinopathy of Prematurity From Computer-Based Image Analysis. JAMA Ophthalmology, 2016, 134, 651.	1.4	95
25	The RSNA International COVID-19 Open Radiology Database (RICORD). Radiology, 2021, 299, E204-E213.	3.6	95
26	Evaluating performance of biomedical image retrieval systems—An overview of the medical image retrieval task at ImageCLEF 2004–2013. Computerized Medical Imaging and Graphics, 2015, 39, 55-61.	3.5	94
27	Construction of a Machine Learning Dataset through Collaboration: The RSNA 2019 Brain CT Hemorrhage Challenge. Radiology: Artificial Intelligence, 2020, 2, e190211.	3.0	94
28	Challenges Related to Artificial Intelligence Research in Medical Imaging and the Importance of Image Analysis Competitions. Radiology: Artificial Intelligence, 2019, 1, e180031.	3.0	88
29	Beyond mean pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: Dose–volume correlates of chronic radiation-associated dysphagia (RAD) after oropharyngeal intensity modulated radiotherapy. Radiotherapy and Oncology, 2016, 118, 304-314.	0.3	85
30	Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning. JAMA Ophthalmology, 2019, 137, 1022.	1.4	81
31	Accuracy, repeatability, and interplatform reproducibility of T ₁ quantification methods used for DCEâ€MRI: Results from a multicenter phantom study. Magnetic Resonance in Medicine, 2018, 79, 2564-2575.	1.9	75
32	Quantitative Imaging Network: Data Sharing and Competitive AlgorithmValidation Leveraging The Cancer Imaging Archive. Translational Oncology, 2014, 7, 147-152.	1.7	73
33	Standard chemoradiation for glioblastoma results in progressive brain volume loss. Neurology, 2015, 85, 683-691.	1.5	70
34	Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. Npj Digital Medicine, 2020, 3, 48.	5.7	70
35	The Impact of Arterial Input Function Determination Variations on Prostate Dynamic Contrast-Enhanced Magnetic Resonance Imaging Pharmacokinetic Modeling: A Multicenter Data Analysis Challenge. Tomography, 2016, 2, 56-66.	0.8	70
36	Phase II study of tivozanib, an oral VEGFR inhibitor, in patients with recurrent glioblastoma. Journal of Neuro-Oncology, 2017, 131, 603-610.	1.4	69

#	Article	IF	CITATIONS
37	Plus Disease in Retinopathy of Prematurity. Ophthalmology, 2016, 123, 2338-2344.	2.5	68
38	A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results from a Multi-institutional Study. Journal of Digital Imaging, 2016, 29, 476-487.	1.6	68
39	A Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning to Monitor Disease Regression After Treatment. JAMA Ophthalmology, 2019, 137, 1029.	1.4	63
40	Plus Disease in Retinopathy of Prematurity. Ophthalmology, 2016, 123, 2345-2351.	2.5	62
41	Quality Assurance Assessment of Diagnostic and Radiation Therapy–Simulation CT Image Registration for Head and Neck Radiation Therapy: Anatomic Region of Interest–based Comparison of Rigid and Deformable Algorithms. Radiology, 2015, 274, 752-763.	3.6	58
42	Statistical issues in the comparison of quantitative imaging biomarker algorithms using pulmonary nodule volume as an example. Statistical Methods in Medical Research, 2015, 24, 107-140.	0.7	55
43	Segmentation and Classification in Digital Pathology for Glioma Research: Challenges and Deep Learning Approaches. Frontiers in Neuroscience, 2020, 14, 27.	1.4	54
44	Applications of Artificial Intelligence for Retinopathy of Prematurity Screening. Pediatrics, 2021, 147, e2020016618.	1.0	52
45	Intravoxel incoherent motion imaging kinetics during chemoradiotherapy for human papillomavirus-associated squamous cell carcinoma of the oropharynx: preliminary results from a prospective pilot study. NMR in Biomedicine, 2015, 28, 1645-1654.	1.6	51
46	Bevacizumab Reduces Permeability and Concurrent Temozolomide Delivery in a Subset of Patients with Recurrent Glioblastoma. Clinical Cancer Research, 2020, 26, 206-212.	3.2	48
47	The ImageCLEFmed Medical Image Retrieval Task Test Collection. Journal of Digital Imaging, 2009, 22, 648-655.	1.6	45
48	Machine Learning Models can Detect Aneurysm Rupture and Identify Clinical Features Associated with Rupture. World Neurosurgery, 2019, 131, e46-e51.	0.7	45
49	Automated Fundus Image Quality Assessment in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. Ophthalmology Retina, 2019, 3, 444-450.	1.2	45
50	The RSNA Pulmonary Embolism CT Dataset. Radiology: Artificial Intelligence, 2021, 3, e200254.	3.0	44
51	The Impact of Arterial Input Function Determination Variations on Prostate Dynamic Contrast-Enhanced Magnetic Resonance Imaging Pharmacokinetic Modeling: A Multicenter Data Analysis Challenge, Part II. Tomography, 2019, 5, 99-109.	0.8	44
52	Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project. American Journal of Neuroradiology, 2018, 39, 1008-1016.	1.2	43
53	CM-101: Type I Collagen–targeted MR Imaging Probe for Detection of Liver Fibrosis. Radiology, 2018, 287, 581-589.	3.6	43
54	Evaluation of a Deep Learning–Derived Quantitative Retinopathy of Prematurity Severity Scale. Ophthalmology, 2021, 128, 1070-1076.	2.5	40

#	Article	IF	CITATIONS
55	Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients. Translational Oncology, 2015, 8, 137-146.	1.7	38
56	Improving Automated Pediatric Bone Age Estimation Using Ensembles of Models from the 2017 RSNA Machine Learning Challenge. Radiology: Artificial Intelligence, 2019, 1, e190053.	3.0	36
57	Multi-Institutional Assessment and Crowdsourcing Evaluation of Deep Learning for Automated Classification of Breast Density. Journal of the American College of Radiology, 2020, 17, 1653-1662.	0.9	36
58	Accounting for data variability in multi-institutional distributed deep learning for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 700-708.	2.2	36
59	Overview of the ImageCLEFmed 2008 Medical Image Retrieval Task. Lecture Notes in Computer Science, 2009, , 512-522.	1.0	36
60	Multimodality imaging and mathematical modelling of drug delivery to glioblastomas. Interface Focus, 2016, 6, 20160039.	1.5	34
61	Radiomics Repeatability Pitfalls in a Scan-Rescan MRI Study of Glioblastoma. Radiology: Artificial Intelligence, 2021, 3, e190199.	3.0	32
62	Plus Disease in Retinopathy of Prematurity: Convolutional Neural Network Performance Using a Combined Neural Network and Feature Extraction Approach. Translational Vision Science and Technology, 2020, 9, 10.	1.1	31
63	Evaluation of artificial intelligence-based telemedicine screening for retinopathy of prematurity. Journal of AAPOS, 2020, 24, 160-162.	0.2	31
64	CoVA: An Acuity Score for Outpatient Screening that Predicts Coronavirus Disease 2019 Prognosis. Journal of Infectious Diseases, 2021, 223, 38-46.	1.9	31
65	Deep Learning for the Diagnosis of Stage inÂRetinopathy of Prematurity. Ophthalmology Retina, 2021, 5, 1027-1035.	1.2	31
66	Analysis of Stroke Detection during the COVID-19 Pandemic Using Natural Language Processing of Radiology Reports. American Journal of Neuroradiology, 2021, 42, 429-434.	1.2	30
67	Implementation and Validation of a Three-dimensional Cardiac Motion Estimation Network. Radiology: Artificial Intelligence, 2019, 1, e180080.	3.0	29
68	Deep learning-based automatic tumor burden assessment of pediatric high-grade gliomas, medulloblastomas, and other leptomeningeal seeding tumors. Neuro-Oncology, 2022, 24, 289-299.	0.6	28
69	Aggressive Posterior Retinopathy of Prematurity. Ophthalmology, 2020, 127, 1105-1112.	2.5	27
70	Right Ventricular Strain Is Common in Intubated COVID-19 Patients and Does Not Reflect Severity of Respiratory Illness. Journal of Intensive Care Medicine, 2021, 36, 900-909.	1.3	27
71	DeepNeuro: an open-source deep learning toolbox for neuroimaging. Neuroinformatics, 2021, 19, 127-140.	1.5	26
72	Evaluating Multisite rCBV Consistency from DSC-MRI Imaging Protocols and Postprocessing Software Across the NCI Quantitative Imaging Network Sites Using a Digital Reference Object (DRO). Tomography, 2019, 5, 110-117.	0.8	25

#	Article	IF	CITATIONS
73	Chronic radiation-associated dysphagia in oropharyngeal cancer survivors: Towards age-adjusted dose constraints for deglutitive muscles. Clinical and Translational Radiation Oncology, 2019, 18, 16-22.	0.9	24
74	Democratizing Al. Journal of the American College of Radiology, 2019, 16, 961-963.	0.9	24
75	SplitAVG: A Heterogeneity-Aware Federated Deep Learning Method for Medical Imaging. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4635-4644.	3.9	24
76	PLUS DISEASE DIAGNOSIS IN RETINOPATHY OF PREMATURITY. Retina, 2013, 33, 1700-1707.	1.0	23
77	Artificial Intelligence for Retinopathy of Prematurity. Ophthalmology, 2022, 129, e69-e76.	2.5	23
78	Accuracy and Reliability of Eye-Based vs Quadrant-Based Diagnosis of Plus Disease in Retinopathy of Prematurity. JAMA Ophthalmology, 2018, 136, 648.	1.4	22
79	Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network. Journal of Medical Imaging, 2017, 5, 1.	0.8	22
80	Magnetic resonance imaging of swallowing-related structures in nasopharyngeal carcinoma patients receiving IMRT: Longitudinal dose–response characterization of quantitative signal kinetics. Radiotherapy and Oncology, 2016, 118, 315-322.	0.3	21
81	An Interactive Tool for Individualized Estimation of Conditional Survival in Rectal Cancer. Annals of Surgical Oncology, 2011, 18, 1547-1552.	0.7	20
82	Prospective assessment of an atlas-based intervention combined with real-time software feedback in contouring lymph node levels and organs-at-risk in the head and neck: Quantitative assessment of conformance to expert delineation. Practical Radiation Oncology, 2013, 3, 186-193.	1.1	20
83	Field of View Normalization in Multi-Site Brain MRI. Neuroinformatics, 2018, 16, 431-444.	1.5	20
84	Deepfakes in Ophthalmology. Ophthalmology Science, 2021, 1, 100079.	1.0	20
85	Federated Learning for Multicenter Collaboration in Ophthalmology. Ophthalmology Retina, 2022, 6, 657-663.	1.2	20
86	Creating a classification of image types in the medical literature for visual categorization. Proceedings of SPIE, 2012, , .	0.8	19
87	Level sets for retinal vasculature segmentation using seeds from ridges and edges from phase maps. , 2012, , 1-6.		19
88	External Validation of a Retinopathy of Prematurity Screening Model Using Artificial Intelligence in 3 Low- and Middle-Income Populations. JAMA Ophthalmology, 2022, 140, 791.	1.4	19
89	Classification and comparison via neural networks. Neural Networks, 2019, 118, 65-80.	3.3	18
90	Variability in Plus Disease Identified Using a Deep Learning-Based Retinopathy of Prematurity Severity Scale. Ophthalmology Retina, 2020, 4, 1016-1021.	1.2	18

#	Article	IF	CITATIONS
91	Sequential neural networks for biologically informed glioma segmentation. , 2018, , .		18
92	Single-Examination Risk Prediction of Severe Retinopathy of Prematurity. Pediatrics, 2021, 148, .	1.0	18
93	Multimodal medical image retrieval. , 2010, , .		17
94	Prognostic value of pretherapy platelet elevation in oropharyngeal cancer patients treated with chemoradiation. International Journal of Cancer, 2016, 138, 1290-1297.	2.3	17
95	Semiâ€automated pulmonary nodule interval segmentation using the <scp>NLST</scp> data. Medical Physics, 2018, 45, 1093-1107.	1.6	17
96	Towards Generation, Management, and Exploration of Combined Radiomics and Pathomics Datasets for Cancer Research. AMIA Summits on Translational Science Proceedings, 2017, 2017, 85-94.	0.4	17
97	A Fully Automated Deep Learning Pipeline for Multi–Vertebral Level Quantification and Characterization of Muscle and Adipose Tissue on Chest CT Scans. Radiology: Artificial Intelligence, 2022, 4, e210080.	3.0	17
98	Automatic image modality based classification and annotation to improve medical image retrieval. Studies in Health Technology and Informatics, 2007, 129, 1334-8.	0.2	17
99	Low Incidence of Pseudoprogression by Imaging in Newly Diagnosed Glioblastoma Patients Treated With Cediranib in Combination With Chemoradiation. Oncologist, 2014, 19, 75-81.	1.9	16
100	A prospective in silico analysis of interdisciplinary and interobserver spatial variability in post-operative target delineation of high-risk oral cavity cancers: Does physician specialty matter?. Clinical and Translational Radiation Oncology, 2018, 12, 40-46.	0.9	16
101	SPIE-AAPM-NCI BreastPathQ challenge: an image analysis challenge for quantitative tumor cellularity assessment in breast cancer histology images following neoadjuvant treatment. Journal of Medical Imaging, 2021, 8, 034501.	0.8	16
102	Quantitative tumor heterogeneity MRI profiling improves machine learning–based prognostication in patients with metastatic colon cancer. European Radiology, 2021, 31, 5759-5767.	2.3	15
103	Multi-Radiologist User Study for Artificial Intelligence-Guided Grading of COVID-19 Lung Disease Severity on Chest Radiographs. Academic Radiology, 2021, 28, 572-576.	1.3	15
104	DeepStrain: A Deep Learning Workflow for the Automated Characterization of Cardiac Mechanics. Frontiers in Cardiovascular Medicine, 2021, 8, 730316.	1.1	15
105	Medical Image Retrieval and Automated Annotation: OHSU at ImageCLEF 2006. Lecture Notes in Computer Science, 2007, , 660-669.	1.0	15
106	Computational Challenges and Collaborative Projects in the NCI Quantitative Imaging Network. Tomography, 2016, 2, 242-249.	0.8	15
107	Federated Learning for Multicenter Collaboration in Ophthalmology. Ophthalmology Retina, 2022, 6, 650-656.	1.2	15
108	Contour-based shape representation using principal curves. Pattern Recognition, 2013, 46, 1140-1150.	5.1	14

#	Article	IF	CITATIONS
109	Plus Disease in Retinopathy of Prematurity: Diagnostic Trends in 2016 Versus 2007. American Journal of Ophthalmology, 2017, 176, 70-76.	1.7	14
110	Individualized Estimation of Conditional Survival for Patients with Head and Neck Cancer. Otolaryngology - Head and Neck Surgery, 2011, 145, 71-73.	1.1	13
111	Structure-based level set method for automatic retinal vasculature segmentation. Eurasip Journal on Image and Video Processing, 2014, 2014, .	1.7	13
112	Standard chemoradiation in combination with VEGF targeted therapy for glioblastoma results in progressive gray and white matter volume loss. Neuro-Oncology, 2018, 20, 289-291.	0.6	12
113	Probing tumor microenvironment in patients with newly diagnosed glioblastoma during chemoradiation and adjuvant temozolomide with functional MRI. Scientific Reports, 2018, 8, 17062.	1.6	11
114	Kinetic Analysis of Lesions Identified on a Rapid Abridged Multiphase (RAMP) Breast MRI Protocol. Academic Radiology, 2020, 27, 672-681.	1.3	11
115	Quantitative Imaging Informatics for Cancer Research. JCO Clinical Cancer Informatics, 2020, 4, 444-453.	1.0	11
116	Artificial intelligence applied to musculoskeletal oncology: a systematic review. Skeletal Radiology, 2022, 51, 245-256.	1.2	11
117	Effectiveness of global features for automatic medical image classification and retrieval – The experiences of OHSU at ImageCLEFmed. Pattern Recognition Letters, 2008, 29, 2032-2038.	2.6	10
118	Development of a Software for Quantitative Evaluation Radiotherapy Target and Organ-at-Risk Segmentation Comparison. Journal of Digital Imaging, 2014, 27, 108-119.	1.6	10
119	Severity of Chest Imaging is Correlated with Risk of Acute Neuroimaging Findings among Patients with COVID-19. American Journal of Neuroradiology, 2021, 42, 831-837.	1.2	10
120	Target Contour Testing/Instructional Computer Software (TaCTICS): A Novel Training and Evaluation Platform for Radiotherapy Target Delineation. AMIA Annual Symposium proceedings, 2010, 2010, 361-5.	0.2	10
121	Automated tracking of emergency department abdominal CT findings during the COVID-19 pandemic using natural language processing. American Journal of Emergency Medicine, 2021, 49, 52-57.	0.7	9
122	Deep Learning for Image Quality Assessment of Fundus Images in Retinopathy of Prematurity. AMIA Annual Symposium proceedings, 2018, 2018, 1224-1232.	0.2	9
123	Web based tools for visualizing imaging data and development of XNATView, a zero footprint image viewer. Frontiers in Neuroinformatics, 2014, 8, 53.	1.3	8
124	Vascular dysfunction promotes regional hypoxia after bevacizumab therapy in recurrent glioblastoma patients. Neuro-Oncology Advances, 2020, 2, vdaa157.	0.4	8
125	In the Era of Deep Learning, Why Reconstruct an Image at All?. Journal of the American College of Radiology, 2021, 18, 170-173.	0.9	8
126	The ImageCLEF Medical Retrieval Task at ICPR 2010 — Information Fusion to Combine Visual and Textual Information. Lecture Notes in Computer Science, 2010, , 99-108.	1.0	8

#	Article	IF	CITATIONS
127	Parametric survival models for predicting the benefit of adjuvant chemoradiotherapy in gallbladder cancer. AMIA Annual Symposium proceedings, 2010, 2010, 847-51.	0.2	8
128	A pilot prospective feasibility study of organ-at-risk definition using Target Contour Testing/Instructional Computer Software (TaCTICS), a training and evaluation platform for radiotherapy target delineation. AMIA Annual Symposium proceedings, 2011, 2011, 654-63.	0.2	8
129	Assessing the Severity of <scp>COVID</scp> â€19 Lung Injury in Rheumatic Diseases Versus the General Population Using Deep Learning–Derived Chest Radiograph Scores. Arthritis Care and Research, 2023, 75, 657-666.	1.5	8
130	Prolonged Intubation in Patients With Prior Cerebrovascular Disease and COVID-19. Frontiers in Neurology, 2021, 12, 642912.	1.1	7
131	Putting the Content Into Context. International Journal of Healthcare Information Systems and Informatics, 2009, 4, 88-98.	1.0	7
132	Comparing the quality of accessing medical literature using content-based visual and textual information retrieval. Proceedings of SPIE, 2009, , .	0.8	6
133	Radiology Implementation Considerations for Artificial Intelligence (AI) Applied to COVID-19, From the <i>AJR</i> Special Series on AI Applications. American Journal of Roentgenology, 2022, 219, 15-23.	1.0	6
134	Intubation and mortality prediction in hospitalized COVID-19 patients using a combination of convolutional neural network-based scoring of chest radiographs and clinical data. BJR Open, 2022, 4, .	0.4	6
135	Interpretable Machine Learning for the Prediction of Amputation Risk Following Lower Extremity Infrainguinal Endovascular Interventions for Peripheral Arterial Disease. CardioVascular and Interventional Radiology, 2022, 45, 633-640.	0.9	6
136	Accurate Determination of Imaging Modality using an Ensemble of Text- and Image-Based Classifiers. Journal of Digital Imaging, 2012, 25, 37-42.	1.6	5
137	MR spectroscopic imaging predicts early response to anti-angiogenic therapy in recurrent glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab060.	0.4	5
138	Automated Radiology-Arthroscopy Correlation of Knee Meniscal Tears Using Natural Language Processing Algorithms. Academic Radiology, 2021, , .	1.3	5
139	Multimodal Medical Image Retrieval OHSU at ImageCLEF 2008. Lecture Notes in Computer Science, 2009, , 744-751.	1.0	5
140	Experimental Design under the Bradley-Terry Model. , 2018, , .		5
141	Experiences from the ImageCLEF Medical Retrieval and Annotation Tasks. The Kluwer International Series on Information Retrieval, 2019, , 231-250.	1.0	5
142	Retinal vasculature segmentation using principal spanning forests. , 2012, , .		4
143	Auto-segmentation of the brachial plexus assessed with TaCTICS – A software platform for rapid multiple-metric quantitative evaluation of contours. Acta Oncológica, 2015, 54, 562-566.	0.8	4
144	Quantitative assessment of target delineation variability for thymic cancers: agreement evaluation of a prospective segmentation challenge. Journal of Radiation Oncology, 2016, 5, 55-61.	0.7	4

#	Article	IF	CITATIONS
145	Evaluation of Simulated Lesions as Surrogates to Clinical Lesions for Thoracic CT Volumetry: The Results of an International Challenge. Academic Radiology, 2019, 26, e161-e173.	1.3	4
146	An in-silico quality assurance study of contouring target volumes in thoracic tumors within a cooperative group setting. Clinical and Translational Radiation Oncology, 2019, 15, 83-92.	0.9	4
147	RSNA-MICCAI Panel Discussion: Machine Learning for Radiology from Challenges to Clinical Applications. Radiology: Artificial Intelligence, 2021, 3, e210118.	3.0	4
148	Exerciseâ€induced calf muscle hyperemia: Rapid mapping of magnetic resonance imaging using deep learning approach. Physiological Reports, 2020, 8, e14563.	0.7	4
149	Using medline queries to generate image retrieval tasks for benchmarking. Studies in Health Technology and Informatics, 2008, 136, 523-8.	0.2	4
150	MRI Simulation Study Investigating Effects of Vessel Topology, Diffusion, and Susceptibility on Transverse Relaxation Rates Using a Cylinder Fork Model. Scientific Reports, 2017, 7, 16223.	1.6	3
151	A Severity Score for Retinopathy of Prematurity. , 2019, , .		3
152	Basic Artificial Intelligence Techniques. Radiologic Clinics of North America, 2021, 59, 941-954.	0.9	3
153	External COVID-19 Deep Learning Model Validation on ACR AI-LAB: It's a Brave New World. Journal of the American College of Radiology, 2022, , .	0.9	3
154	Semi-supervised segmentation using non-parametric snakes for 3D-CT applications in Radiation Oncology. , 2008, , .		2
155	Robust segmentation using non-parametric snakes with multiple cues for applications in radiation oncology. Proceedings of SPIE, 2009, , .	0.8	2
156	The ImageCLEF Medical Retrieval Task at ICPR 2010 – Information Fusion. , 2010, , .		2
157	A Novel Application of Principal Surfaces to Segmentation in 4D-CT for Radiation Treatment Planning. , 2010, , .		2
158	A decade of community-wide efforts in advancing medical image understanding and retrieval. Computerized Medical Imaging and Graphics, 2015, 39, 1-2.	3.5	2
159	Upsampling dynamic contrast enhanced MRI. , 2015, , .		2
160	Toward a severity index for ROP: An unsupervised approach. , 2016, 2016, 1312-1315.		2
161	Reply. Ophthalmology, 2018, 125, e86.	2.5	1
162	Survival prediction models for estimating the benefit of post-operative radiation therapy for gallbladder cancer and lung cancer. AMIA Annual Symposium proceedings, 2008, , 348-52.	0.2	1

#	Article	IF	CITATIONS
163	Medical multimedia analysis and retrieval. , 2011, , .		0
164	NIMG-22. MRI CHANGES IN NEWLY DIAGNOSED GLIOBLASTOMA DURING CHEMORADIATION AND ADJUVANT TEMOZOLOMIDE. Neuro-Oncology, 2016, 18, vi128-vi129.	0.6	0
165	NIMG-42. PENETRATION OF RADIOLABELED TEMOZOLOMIDE CORRELATES WITH CONTRAST ENHANCEMENT IN PATIENTS WITH RECURRENT GBM TREATED WITH BEVACIZUMAB. Neuro-Oncology, 2016, 18, vi133-vi133.	0.6	0
166	NIMC-09. CHARACTERIZING GLIOMA MICROENVIRONMENT WITH ULTRA-HIGH GRADIENT DIFFUSION MRI. Neuro-Oncology, 2017, 19, vi144-vi144.	0.6	0
167	Segmentation and Other Image Operations. , 2021, , 1-20.		0
168	Radiomics and Radiogenomics with Deep Learning in Neuro-oncology. Lecture Notes in Computer Science, 2020, , 199-211.	1.0	0
169	NIMG-05. ADVANCED IMAGING TO ASSESS LONGITUDINAL VASCULAR CHANGES IN BRAIN METASTASES TREATED WITH CHECKPOINT INHIBITION. Neuro-Oncology, 2020, 22, ii147-ii147.	0.6	0
170	Improved training efficiency for retinopathy of prematurity deep learning models using comparison versus class labels. Ophthalmology Science, 2022, , 100122.	1.0	0
171	Retrieving similar cases from the medical literature - the ImageCLEF experience. Studies in Health Technology and Informatics, 2010, 160, 1189-93.	0.2	0