
Shuo Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1871841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cofactorâ€Assisted Artificial Enzyme with Multiple Liâ€Bond Networks for Sustainable Polysulfide Conversion in Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2104205.	11.2	20
2	Sulfur Reduction Catalyst Design Inspired by Elemental Periodic Expansion Concept for Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 6414-6425.	14.6	37
3	Pd/PdO Electrocatalysts Boost Their Intrinsic Nitrogen Reduction Reaction Activity and Selectivity <i>via</i> Controllably Modulating the Oxygen Level. ACS Applied Materials & Interfaces, 2022, 14, 20988-20996.	8.0	11
4	Organocatalysis-Inspired Palladium Molecule as a Robust Polysulfide-Confinement-Scissors Catalyst for Advanced Lithium–Sulfur Battery. ACS Applied Energy Materials, 2022, 5, 8538-8546.	5.1	4
5	Hydrogen-substituted graphdiyne/graphene as an sp/sp ² hybridized carbon interlayer for lithium–sulfur batteries. Nanoscale, 2021, 13, 3817-3826.	5.6	27
6	NaBH ₄ -reduction induced tunable oxygen vacancies in LaNiO _{2.7} to enhance the oxygen evolution reaction. Chemical Communications, 2021, 57, 7168-7171.	4.1	11
7	Oxygen doping in antimony sulfide nanosheets to facilitate catalytic conversion of polysulfides for lithium–sulfur batteries. Chemical Communications, 2021, 57, 3255-3258.	4.1	23
8	Progress and Prospect of Organic Electrocatalysts in Lithiumâ^'Sulfur Batteries. Frontiers in Chemistry, 2021, 9, 703354.	3.6	5
9	Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 7538-7551.	14.6	80
10	Biomimetic Molecule Catalysts to Promote the Conversion of Polysulfides for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2003354.	14.9	53
11	Electronic Structure of CO Adsorbed on Electrodeposited Pt Thin Layers on Polycrystalline Au Electrodes Probed by Potential-Dependent IR/Visible Double-Resonance Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 8191-8201.	3.1	7
12	Broader energy distribution of CO adsorbed at polycrystalline Pt electrode in comparison with that at at Pt(111) electrode in H2SO4 solution confirmed by potential dependent IR/visible double resonance sum frequency generation spectroscopy. Electrochimica Acta, 2017, 235, 280-286.	5.2	8
13	Electronic Structure of the CO/Pt(111) Electrode Interface Probed by Potential-Dependent IR/Visible Double Resonance Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 26056-26063.	3.1	25