
Ken Maes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1871722/publications.pdf Version: 2024-02-01

KEN MAES

#	Article	IF	CITATIONS
1	The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells. Oncotarget, 2015, 6, 43992-44004.	0.8	127
2	In anemia of multiple myeloma, hepcidin is induced by increased bone morphogenetic protein 2. Blood, 2010, 116, 3635-3644.	0.6	120
3	Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer Journal, 2018, 8, 105.	2.8	113
4	Induction of miR-146a by multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity. Cancer Letters, 2016, 377, 17-24.	3.2	106
5	Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget, 2016, 7, 6521-6537.	0.8	66
6	Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget, 2016, 7, 38927-38945.	0.8	53
7	Metabolic Features of Multiple Myeloma. International Journal of Molecular Sciences, 2018, 19, 1200.	1.8	53
8	Myeloid-derived suppressor cells induce multiple myeloma cell survival by activating the AMPK pathway. Cancer Letters, 2019, 442, 233-241.	3.2	49
9	The role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma. Oncotarget, 2014, 5, 3115-3129.	0.8	48
10	Epigenetic Modulating Agents as a New Therapeutic Approach in Multiple Myeloma. Cancers, 2013, 5, 430-461.	1.7	43
11	Extracellular S100A9 Protein in Bone Marrow Supports Multiple Myeloma Survival by Stimulating Angiogenesis and Cytokine Secretion. Cancer Immunology Research, 2017, 5, 839-846.	1.6	41
12	The insulin-like growth factor system in multiple myeloma: diagnostic and therapeutic potential. Oncotarget, 2016, 7, 48732-48752.	0.8	40
13	The therapeutic potential of cell cycle targeting in multiple myeloma. Oncotarget, 2017, 8, 90501-90520.	0.8	39
14	The Epigenome in Multiple Myeloma: Impact on Tumor Cell Plasticity and Drug Response. Frontiers in Oncology, 2018, 8, 566.	1.3	39
15	The Transfer of Sphingomyelinase Contributes to Drug Resistance in Multiple Myeloma. Cancers, 2019, 11, 1823.	1.7	36
16	Therapeutic Efficacy of ²¹³ Bi-labeled sdAbs in a Preclinical Model of Ovarian Cancer. Molecular Pharmaceutics, 2020, 17, 3553-3566.	2.3	34
17	Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget, 2016, 7, 4062-4076.	0.8	33
18	DNMTi/HDACi combined epigenetic targeted treatment induces reprogramming of myeloma cells in the direction of normal plasma cells. British Journal of Cancer, 2018, 118, 1062-1073.	2.9	30

Ken Maes

#	Article	IF	CITATIONS
19	Both mucosal-associated invariant and natural killer T-cell deficiency in multiple myeloma can be countered by PD-1 inhibition. Haematologica, 2017, 102, e266-e270.	1.7	28
20	Loss of RASSF4 Expression in Multiple Myeloma Promotes RAS-Driven Malignant Progression. Cancer Research, 2018, 78, 1155-1168.	0.4	27
21	Epigenetic treatment of multiple myeloma mediates tumor intrinsic and extrinsic immunomodulatory effects. Oncolmmunology, 2018, 7, e1484981.	2.1	26
22	<i>In vivo</i> treatment with epigenetic modulating agents induces transcriptional alterations associated with prognosis and immunomodulation in multiple myeloma. Oncotarget, 2015, 6, 3319-3334.	0.8	25
23	G9a/GLP targeting in MM promotes autophagy-associated apoptosis and boosts proteasome inhibitor–mediated cell death. Blood Advances, 2021, 5, 2325-2338.	2.5	19
24	AXL Receptor Tyrosine Kinase as a Therapeutic Target in Hematological Malignancies: Focus on Multiple Myeloma. Cancers, 2019, 11, 1727.	1.7	18
25	Increased resistance to proteasome inhibitors in multiple myeloma mediated by cIAP2 - implications for a combinatorial treatment. Oncotarget, 2015, 6, 20621-20635.	0.8	17
26	The genetic landscape of 5T models for multiple myeloma. Scientific Reports, 2018, 8, 15030.	1.6	15
27	The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic. Oncotarget, 2014, 5, 11193-11208.	0.8	15
28	The anaphase-promoting complex/cyclosome: a new promising target in diffuse large B-cell lymphoma and mantle cell lymphoma. British Journal of Cancer, 2019, 120, 1137-1146.	2.9	12
29	Epigenetic Modifiers: Anti-Neoplastic Drugs With Immunomodulating Potential. Frontiers in Immunology, 2021, 12, 652160.	2.2	12
30	Maternal embryonic leucine zipper kinase is a novel target for diffuse large B cell lymphoma and mantle cell lymphoma. Blood Cancer Journal, 2019, 9, 87.	2.8	7
31	Commentary: Immunogenic Cell Death and Immunotherapy of Multiple Myeloma. Frontiers in Cell and Developmental Biology, 2019, 7, 149.	1.8	5
32	The Use of Murine Models for Studying Mechanistic Insights of Genomic Instability in Multiple Myeloma. Frontiers in Genetics, 2019, 10, 740.	1.1	5
33	Experimental African trypanosome infection suppresses the development of multiple myeloma in mice by inducing intrinsic apoptosis of malignant plasma cells. Oncotarget, 2017, 8, 52016-52025.	0.8	5
34	Exosomes Play a Key Role in Multiple Myeloma Bone Disease and Tumor Development. Blood, 2018, 132, 4484-4484.	0.6	3
35	MCL1 Inhibitors in Multiple Myeloma. Blood, 2019, 134, SCI-12-SCI-12.	0.6	1
36	Tasquinimod Targets Immunosuppressive Myeloid Cells, Increases Osteogenesis and Has Direct Anti-Myeloma Effects By Inhibiting c-Myc Expression in Vitro and In Vivo. Blood, 2021, 138, 1594-1594.	0.6	1

#	Article	IF	CITATIONS
37	Receptor Tyrosine Kinase AXL: A Potential Strategy to Counter Immune Suppression and Dormancy in Multiple Myeloma. Blood, 2019, 134, 4335-4335.	0.6	ο