
Dieter Steinhilber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1871358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Borcalein: a Carboraneâ€Based Analogue of Baicalein with 12‣ipoxygenaseâ€Independent Toxicity. ChemMedChem, 2022, 17, .	3.2	8
2	Repurposing of 8â€Hydroxyquinolineâ€Based Butyrylcholinesterase and Cathepsin B Ligands as Potent Nonpeptidic Deoxyribonuclease I Inhibitors. ChemMedChem, 2022, 17, .	3.2	4
3	Formation, Signaling and Occurrence of Specialized Pro-Resolving Lipid Mediators—What is the Evidence so far?. Frontiers in Pharmacology, 2022, 13, 838782.	3.5	70
4	Systematic Assessment of Fragment Identification for Multitarget Drug Design. ChemMedChem, 2021, 16, 1088-1092.	3.2	8
5	Development and inâ€vitro Profiling of Dual FXR/LTA4H Modulators. ChemMedChem, 2021, 16, 2366-2374.	3.2	6
6	Heterodimer formation with retinoic acid receptor RXRα modulates coactivator recruitment by peroxisome proliferator-activated receptor PPARγ. Journal of Biological Chemistry, 2021, 297, 100814.	3.4	16
7	Modulation of microRNA processing by 5â€lipoxygenase. FASEB Journal, 2021, 35, e21193.	0.5	8
8	Structural Modifications Yield Novel Insights Into the Intriguing Pharmacodynamic Potential of Anti-inflammatory Nitro-Fatty Acids. Frontiers in Pharmacology, 2021, 12, 715076.	3.5	5
9	Structure-Based Design of Dual Partial Peroxisome Proliferator-Activated Receptor Î ³ Agonists/Soluble Epoxide Hydrolase Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 17259-17276.	6.4	10
10	Inhibitors of Human 5-Lipoxygenase Potently Interfere With Prostaglandin Transport. Frontiers in Pharmacology, 2021, 12, 782584.	3.5	7
11	Design of Dual Inhibitors of Soluble Epoxide Hydrolase and LTA ₄ Hydrolase. ACS Medicinal Chemistry Letters, 2020, 11, 298-302.	2.8	10
12	4-(4-Chlorophenyl)thiazol-2-amines as pioneers of potential neurodegenerative therapeutics with anti-inflammatory properties based on dual DNase I and 5-LO inhibition. Bioorganic Chemistry, 2020, 95, 103528.	4.1	13
13	The Emerging Therapeutic Potential of Nitro Fatty Acids and Other Michael Acceptor-Containing Drugs for the Treatment of Inflammation and Cancer. Frontiers in Pharmacology, 2020, 11, 1297.	3.5	26
14	Exploring CYP2J2: lipid mediators, inhibitors and therapeutic implications. Drug Discovery Today, 2020, 25, 1744-1753.	6.4	13
15	Dicer up-regulation by inhibition of specific proteolysis in differentiating monocytic cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8573-8583.	7.1	10
16	Analysis of proximal <i>ALOX5</i> promoter binding proteins by quantitative proteomics. FEBS Journal, 2020, 287, 4481-4499.	4.7	14
17	<scp>l</scp> -Thyroxin and the Nonclassical Thyroid Hormone TETRAC Are Potent Activators of PPARγ. Journal of Medicinal Chemistry, 2020, 63, 6727-6740.	6.4	26
18	S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. Journal of Clinical Investigation, 2020, 130, 5461-5476.	8.2	48

#	Article	IF	CITATIONS
19	Elucidation of chemical modifier reactivity towards peptides and proteins and the analysis of specific fragmentation by matrixâ€essisted laser desorption/ionization collisionâ€induced dissociation tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 40-49.	1.5	6
20	Regulation of Eicosanoid Pathways by MicroRNAs. Frontiers in Pharmacology, 2019, 10, 824.	3.5	15
21	Iron-Dependent Trafficking of 5-Lipoxygenase and Impact on Human Macrophage Activation. Frontiers in Immunology, 2019, 10, 1347.	4.8	39
22	Discovery of the First in Vivo Active Inhibitors of the Soluble Epoxide Hydrolase Phosphatase Domain. Journal of Medicinal Chemistry, 2019, 62, 8443-8460.	6.4	19
23	Structure optimization of a new class of PPARÎ ³ antagonists. Bioorganic and Medicinal Chemistry, 2019, 27, 115082.	3.0	4
24	Mass Spectrometry-Based Proteomics Approach Characterizes the Dual Functionality of miR-328 in Monocytes. Frontiers in Pharmacology, 2019, 10, 640.	3.5	11
25	miRâ€574â€5p as RNA decoy for CUGBP1 stimulates human lung tumor growth by mPGESâ€1 induction. FASEB Journal, 2019, 33, 6933-6947.	0.5	30
26	Zafirlukast Is a Dual Modulator of Human Soluble Epoxide Hydrolase and Peroxisome Proliferator-Activated Receptor γ. Frontiers in Pharmacology, 2019, 10, 263.	3.5	18
27	Beyond leukotriene formation—The noncanonical functions of 5-lipoxygenase. Prostaglandins and Other Lipid Mediators, 2019, 142, 24-32.	1.9	26
28	Sphingosineâ€1â€phosphate (S1P) induces potent antiâ€inflammatory effects <i>in vitro</i> and <i>in vivo</i> by S1P receptor 4â€mediated suppression of 5â€lipoxygenase activity. FASEB Journal, 2019, 33, 1711-1726.	0.5	30
29	Melleolides from Honey Mushroom Inhibit 5-Lipoxygenase via Cys159. Cell Chemical Biology, 2019, 26, 60-70.e4.	5.2	13
30	Carboraneâ€Based Analogues of 5â€Lipoxygenase Inhibitors Coâ€inhibit Heat Shock Protein 90 in HCT116 Cells. ChemMedChem, 2019, 14, 255-261.	3.2	18
31	Drug-Mediated Intracellular Donation of Nitric Oxide Potently Inhibits 5-Lipoxygenase: A Possible Key to Future Antileukotriene Therapy. Antioxidants and Redox Signaling, 2018, 28, 1265-1285.	5.4	3
32	How to effectively treat acute leukemia patients bearing MLL-rearrangements ?. Biochemical Pharmacology, 2018, 147, 183-190.	4.4	23
33	Apoptotic Cancer Cells Suppress 5-Lipoxygenase in Tumor-Associated Macrophages. Journal of Immunology, 2018, 200, 857-868.	0.8	34
34	Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade. Biochemical Pharmacology, 2018, 158, 161-173.	4.4	41
35	Boosting Anti-Inflammatory Potency of Zafirlukast by Designed Polypharmacology. Journal of Medicinal Chemistry, 2018, 61, 5758-5764.	6.4	31
36	Anti-inflammatory nitro-fatty acids suppress tumor growth by triggering mitochondrial dysfunction and activation of the intrinsic apoptotic pathway in colorectal cancer cells. Biochemical Pharmacology, 2018, 155, 48-60.	4.4	18

#	Article	IF	CITATIONS
37	Characterization and cellular localization of human 5-lipoxygenase and its protein isoforms 5-LOΔ13, 5-LOΔ4 and 5-LOp12. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 561-571.	2.4	4
38	CarbORevâ€5901: The First Carboraneâ€Based Inhibitor of the 5â€Lipoxygenase Pathway. ChemMedChem, 2017, 12, 1081-1086.	3.2	15
39	Characterization of the molecular mechanism of 5-lipoxygenase inhibition by 2-aminothiazoles. Biochemical Pharmacology, 2017, 123, 52-62.	4.4	9
40	Epigenetic control of microsomal prostaglandin E synthase-1 by HDAC-mediated recruitment of p300. Journal of Lipid Research, 2017, 58, 386-392.	4.2	5
41	Camptothecin and its analog SN-38, the active metabolite of irinotecan, inhibit binding of the transcriptional regulator and oncoprotein FUBP1 to its DNA target sequence FUSE. Biochemical Pharmacology, 2017, 146, 53-62.	4.4	18
42	TGFβ/SMAD signalling modulates MLL and MLL-AF4 mediated 5-lipoxygenase promoter activation. Prostaglandins and Other Lipid Mediators, 2017, 133, 60-67.	1.9	6
43	A Dual Modulator of Farnesoid X Receptor and Soluble Epoxide Hydrolase To Counter Nonalcoholic Steatohepatitis. Journal of Medicinal Chemistry, 2017, 60, 7703-7724.	6.4	69
44	Michael acceptor containing drugs are a novel class of 5-lipoxygenase inhibitor targeting the surface cysteines C416 and C418. Biochemical Pharmacology, 2017, 125, 55-74.	4.4	18
45	PAFAH1B1 and the IncRNA <i>NONHSAT073641</i> maintain an angiogenic phenotype in human endothelial cells. Acta Physiologica, 2016, 218, 13-27.	3.8	22
46	Thermodynamic properties of leukotriene A 4 hydrolase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 5243-5248.	3.0	12
47	UPF1 regulates myeloid cell functions and S100A9 expression by the hnRNP E2/miRNA-328 balance. Scientific Reports, 2016, 6, 31995.	3.3	25
48	Cellular analysis of the histamine H4 receptor in human myeloid cells. Biochemical Pharmacology, 2016, 103, 74-84.	4.4	21
49	Development of novel aminothiazole-comprising 5-LO inhibitors. Future Medicinal Chemistry, 2016, 8, 149-164.	2.3	21
50	<i>N</i> Benzylbenzamides: A Novel Merged Scaffold for Orally Available Dual Soluble Epoxide Hydrolase/Peroxisome Proliferator-Activated Receptor γ Modulators. Journal of Medicinal Chemistry, 2016, 59, 61-81.	6.4	44
51	Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells?. , 2016, 157, 43-64.		36
52	Small molecules with anti-inflammatory properties in clinical development. , 2016, 157, 163-187.		45
53	The Histone Demethylase PHF8 Is Essential for Endothelial Cell Migration. PLoS ONE, 2016, 11, e0146645.	2.5	27
54	Identification and Characterization of a New Protein Isoform of Human 5-Lipoxygenase. PLoS ONE, 2016. 11. e0166591.	2.5	6

DIETER STEINHILBER

#	Article	IF	CITATIONS
55	Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget, 2016, 7, 32462-32477.	1.8	130
56	Characterization of the interaction of human 5-lipoxygenase with its activating protein FLAP. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1465-1472.	2.4	23
57	Novel insights into the regulation of cyclooxygenase-2 expression by platelet-cancer cell cross-talk. Biochemical Society Transactions, 2015, 43, 707-714.	3.4	29
58	NSAIDs Ibuprofen, Indometacin and Diclofenac do not interact with Farnesoid X Receptor. Scientific Reports, 2015, 5, 14782.	3.3	39
59	Epigenetic Regulation of Angiogenesis by JARID1B-Induced Repression of HOXA5. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1645-1652.	2.4	33
60	Lipoxin and resolvin biosynthesis is dependent on 5â€lipoxygenase activating protein. FASEB Journal, 2015, 29, 5029-5043.	0.5	70
61	5-Lipoxygenase Is a Direct Target of miR-19a-3p and miR-125b-5p. Journal of Immunology, 2015, 194, 1646-1653.	0.8	51
62	Structural modification of resveratrol leads to increased anti-tumor activity, but causes profound changes in the mode of action. Toxicology and Applied Pharmacology, 2015, 287, 67-76.	2.8	27
63	5-Lipoxygenase is a direct p53 target gene in humans. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1003-1016.	1.9	20
64	Response to Letter Regarding Article, "Vitamin D Promotes Vascular Regeneration― Circulation, 2015, 131, e515-6.	1.6	0
65	Pirinixic acids: flexible fatty acid mimetics with various biological activities. Future Medicinal Chemistry, 2015, 7, 1597-1616.	2.3	8
66	5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 331-339.	2.4	371
67	Development and evaluation of ST-1829 based on 5-benzylidene-2-phenylthiazolones as promising agent for anti-leukotriene therapy. European Journal of Medicinal Chemistry, 2015, 89, 503-523.	5.5	12
68	AF4 and AF4-MLL mediate transcriptional elongation of 5-lipoxygenase mRNA by 1, 25-dihydroxyvitamin D3. Oncotarget, 2015, 6, 25784-25800.	1.8	11
69	Vitamin D Promotes Vascular Regeneration. Circulation, 2014, 130, 976-986.	1.6	91
70	Vitamin D in inflammatory diseases. Frontiers in Physiology, 2014, 5, 244.	2.8	192
71	Recent Advances in the Search for Novel 5â€Lipoxygenase Inhibitors. Basic and Clinical Pharmacology and Toxicology, 2014, 114, 70-77.	2.5	110
72	Roles of coactosin-like protein (CLP) and 5-lipoxygenase-activating protein (FLAP) in cellular leukotriene biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11371-11376.	7.1	40

DIETER STEINHILBER

#	Article	IF	CITATIONS
73	5-Lipoxygenase Is a Candidate Target for Therapeutic Management of Stem Cell–like Cells in Acute Myeloid Leukemia. Cancer Research, 2014, 74, 5244-5255.	0.9	47
74	Stabilisation and characterisation of the isolated regulatory domain of human 5-lipoxygenase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1538-1547.	2.4	11
75	Multi-dimensional target profiling of N,4-diaryl-1,3-thiazole-2-amines as potent inhibitors of eicosanoid metabolism. European Journal of Medicinal Chemistry, 2014, 84, 302-311.	5.5	29
76	Chiral chromatography–tandem mass spectrometry applied to the determination of pro-resolving lipid mediators. Journal of Chromatography A, 2014, 1360, 150-163.	3.7	16
77	Exploring the Chemical Space of Multitarget Ligands Using Aligned Self-Organizing Maps. ACS Medicinal Chemistry Letters, 2013, 4, 1169-1172.	2.8	33
78	Dual-Target Virtual Screening by Pharmacophore Elucidation and Molecular Shape Filtering. ACS Medicinal Chemistry Letters, 2012, 3, 155-158.	2.8	43
79	Enzymatically Inactive 5-Lipoxygenase Inhibits Wnt-Signaling Activation Induced by Leukemia Inducing Oncogenes Blood, 2012, 120, 2424-2424.	1.4	0
80	5-Lipoxygenase: Underappreciated Role of a Pro-Inflammatory Enzyme in Tumorigenesis. Frontiers in Pharmacology, 2010, 1, 143.	3.5	52
81	Targeting the 5-Lipoxygenase as a Novel Principle of Stem Cell Therapy In Acute Myeloid Leukemia. Blood, 2010, 116, 1846-1846.	1.4	1
82	Novel Pirinixic Acids as PPARα Preferential Dual PPARα/γ Agonists. QSAR and Combinatorial Science, 2009, 28, 576-586.	1.4	12