Jennifer C Schmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1871259/publications.pdf

Version: 2024-02-01

1683354 1719596 7 119 5 7 citations h-index g-index papers 7 7 7 257 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adiabaticity of the Proton-Coupled Electron-Transfer Step in the Reduction of Superoxide Effected by Nickel-Containing Superoxide Dismutase Metallopeptide-Based Mimics. Journal of Physical Chemistry B, 2015, 119, 5453-5461.	1.2	5
2	Cysteinate Protonation and Water Hydrogen Bonding at the Active-Site of a Nickel Superoxide Dismutase Metallopeptide-Based Mimic: Implications for the Mechanism of Superoxide Reduction. Journal of the American Chemical Society, 2014, 136, 16009-16022.	6.6	22
3	Formation and structure of two luminescent salts of $[Au(SCSN3)2]$ â'obtained through the $[2 + 3]$ cyclization of carbon disulfide and azide ion. Dalton Transactions, 2014, 43, 13756.	1.6	4
4	Copper ligation to soluble oligomers of the English mutant of the amyloid- \hat{l}^2 peptide yields a linear Cu(i) site that is resistant to O2 oxidation. Chemical Communications, 2013, 49, 4797.	2.2	12
5	Crystallographic and Computational Studies of Luminescent, Binuclear Gold(I) Complexes, Au ^I ₂ (Ph ₂ P(CH ₂) _{<i>n</i>} PPh ₂) _{(i>n} PPh ₂) _{(i>n}) _{(i>n}) _{(i>n}) _{(i>n}) _{(i>ni>ni>ni>i>ni>i>ni>i>ni>i>ni>i>ni>i>ni>ni>i>ni>i>ni>i>ni>i>ni>i>ni>i>ni>i>n<in<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n<in>i<n< td=""><td>ub12<td>b>l%\$ub>2</td></td></n<></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></n<in></in<in>}	ub 12 <td>b>l%\$ub>2</td>	b> l%\$ ub>2
6	Sequential Oxidations of Thiolates and the Cobalt Metallocenter in a Synthetic Metallopeptide: Implications for the Biosynthesis of Nitrile Hydratase. Inorganic Chemistry, 2013, 52, 5236-5245.	1.9	16
7	Modulation of Luminescence by Subtle Anion–Cation and Anionâ^'Ï€ Interactions in a Trigonal Au ^I ···Cu ^I Complex. Inorganic Chemistry, 2012, 51, 1207-1209.	1.9	39