Alexandra Boltasseva

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1871241/alexandra-boltasseva-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67 19,870 246 138 h-index g-index citations papers 8.2 23,810 325 7.33 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
246	Understanding all-optical switching at the epsilon-near-zero point: a tutorial review. <i>Applied Physics B: Lasers and Optics</i> , 2022 , 128, 1	1.9	1
245	Optimizing Startshot Lightsail Design: A Generative Network-Based Approach. <i>ACS Photonics</i> , 2022 , 9, 190-196	6.3	2
244	The true love of materials expressed: editorial. Optical Materials Express, 2021, 11, 4093	2.6	
243	A tribute to Mark Stockman. <i>Nanophotonics</i> , 2021 , 10, 3569-3585	6.3	
242	Enhancing Photoelectrochemical Energy Storage by Large-Area CdS-Coated Nickel Nanoantenna Arrays. <i>ACS Applied Energy Materials</i> , 2021 , 4, 11367-11376	6.1	2
241	We value your Opinion: editorial. <i>Optical Materials Express</i> , 2021 , 11, 3779	2.6	1
240	Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically on Chip-Compatible Substrates. <i>Nano Letters</i> , 2021 , 21, 8182-8189	11.5	6
239	Celebrating ten years: editorial. <i>Optical Materials Express</i> , 2021 , 11, 1566	2.6	
238	Deep learning for the design of photonic structures. <i>Nature Photonics</i> , 2021 , 15, 77-90	33.9	168
238	Deep learning for the design of photonic structures. <i>Nature Photonics</i> , 2021 , 15, 77-90 Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics. <i>Materials Today</i> , 2021 , 43, 27-36	33.9	168
, in the second	Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics. <i>Materials</i>		
237	Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics. <i>Materials Today</i> , 2021 , 43, 27-36 Lithography-Free Plasmonic Color Printing with Femtosecond Laser on Semicontinuous Silver Films.	21.8	3
² 37	Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics. <i>Materials Today</i> , 2021 , 43, 27-36 Lithography-Free Plasmonic Color Printing with Femtosecond Laser on Semicontinuous Silver Films. <i>ACS Photonics</i> , 2021 , 8, 521-530	21.8	3
² 37 ² 36 ² 35	Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics. <i>Materials Today</i> , 2021 , 43, 27-36 Lithography-Free Plasmonic Color Printing with Femtosecond Laser on Semicontinuous Silver Films. <i>ACS Photonics</i> , 2021 , 8, 521-530 Machine Learning for Integrated Quantum Photonics. <i>ACS Photonics</i> , 2021 , 8, 34-46 Single and Multi-Mode Directional Lasing from Arrays of Dielectric Nanoresonators. <i>Laser and</i>	21.86.36.3	369
237 236 235 234	Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics. <i>Materials Today</i> , 2021 , 43, 27-36 Lithography-Free Plasmonic Color Printing with Femtosecond Laser on Semicontinuous Silver Films. <i>ACS Photonics</i> , 2021 , 8, 521-530 Machine Learning for Integrated Quantum Photonics. <i>ACS Photonics</i> , 2021 , 8, 34-46 Single and Multi-Mode Directional Lasing from Arrays of Dielectric Nanoresonators. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2000411	21.86.36.38.3	3 6 9 17
237 236 235 234 233	Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics. <i>Materials Today</i> , 2021 , 43, 27-36 Lithography-Free Plasmonic Color Printing with Femtosecond Laser on Semicontinuous Silver Films. <i>ACS Photonics</i> , 2021 , 8, 521-530 Machine Learning for Integrated Quantum Photonics. <i>ACS Photonics</i> , 2021 , 8, 34-46 Single and Multi-Mode Directional Lasing from Arrays of Dielectric Nanoresonators. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2000411 High-harmonic generation in metallic titanium nitride. <i>Nature Communications</i> , 2021 , 12, 4981 Visible photon generation via four-wave mixing in near-infrared near-zero-index thin films. <i>Optics</i>	21.8 6.3 6.3 8.3	3 6 9 17 4

(2020-2021)

229	Room-temperature single-photon emitters in silicon nitride. Science Advances, 2021, 7, eabj0627	14.3	2
228	Machine learning framework for quantum sampling of highly constrained, continuous optimization problems. <i>Applied Physics Reviews</i> , 2021 , 8, 041418	17.3	3
227	Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. <i>Applied Physics Reviews</i> , 2020 , 7, 021407	17.3	67
226	Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. <i>Science</i> , 2020 , 369, 423-426	33.3	46
225	Transdimensional material platforms for tunable metasurface design. MRS Bulletin, 2020, 45, 188-195	3.2	6
224	Broad Frequency Shift of Parametric Processes in Epsilon-Near-Zero Time-Varying Media. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 1318	2.6	12
223	Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity. <i>ACS Photonics</i> , 2020 , 7, 472-479	6.3	6
222	Dynamical Control of Broadband Coherent Absorption in ENZ Films. <i>Micromachines</i> , 2020 , 11,	3.3	4
221	TiN@TiO2 CoreBhell Nanoparticles as Plasmon-Enhanced Photosensitizers: The Role of Hot Electron Injection. <i>Laser and Photonics Reviews</i> , 2020 , 14, 1900376	8.3	16
220	Non-fading Plasmonic Color Printing on Semicontinuous Metal Films with Protective Atomic Layer Deposition 2020 ,		1
219	Hybrid magneto photonic material structure for plasmon assisted magnetic switching. <i>Optical Materials Express</i> , 2020 , 10, 3107	2.6	1
218	Reduced optical losses in refractory plasmonic titanium nitride thin films deposited with molecular beam epitaxy. <i>Optical Materials Express</i> , 2020 , 10, 2679	2.6	13
217	Adiabatic frequency shifting in epsilon-near-zero materials: the role of group velocity. <i>Optica</i> , 2020 , 7, 226	8.6	32
216	Ultrafast quantum photonics enabled by coupling plasmonic nanocavities to strongly radiative antennas. <i>Optica</i> , 2020 , 7, 463	8.6	31
215	Machine learning ssisted global optimization of photonic devices. <i>Nanophotonics</i> , 2020 , 10, 371-383	6.3	30
214	Dynamically controlled random lasing with colloidal titanium carbide MXene. <i>Optical Materials Express</i> , 2020 , 10, 2304	2.6	1
213	Broadband, High-Speed, and Large-Amplitude Dynamic Optical Switching with Yttrium-Doped Cadmium Oxide. <i>Advanced Functional Materials</i> , 2020 , 30, 1908377	15.6	18
212	On-Chip Single-Layer Integration of Diamond Spins with Microwave and Plasmonic Channels. <i>ACS Photonics</i> , 2020 , 7, 2018-2026	6.3	3

211	Enhancing the graphene photocurrent using surface plasmons and a p-n junction. <i>Light: Science and Applications</i> , 2020 , 9, 126	16.7	24
21 0	Broadband Ultrafast Dynamics of Refractory Metals: TiN and ZrN. <i>Advanced Optical Materials</i> , 2020 , 8, 2000652	8.1	18
209	Chip-Compatible Quantum Plasmonic Launcher. Advanced Optical Materials, 2020, 8, 2000889	8.1	6
208	Rapid Classification of Quantum Sources Enabled by Machine Learning. <i>Advanced Quantum Technologies</i> , 2020 , 3, 2000067	4.3	10
207	Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. <i>Nano Letters</i> , 2020 , 20, 3663-3672	11.5	20
206	Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons. <i>Faraday Discussions</i> , 2019 , 214, 283-295	3.6	14
205	Hybrid plasmonic AulliN vertically aligned nanocomposites: a nanoscale platform towards tunable optical sensing. <i>Nanoscale Advances</i> , 2019 , 1, 1045-1054	5.1	28
204	Spatial and Temporal Nanoscale Plasmonic Heating Quantified by Thermoreflectance. <i>Nano Letters</i> , 2019 , 19, 3796-3803	11.5	16
203	Overcoming quantum decoherence with plasmonics. <i>Science</i> , 2019 , 364, 532-533	33.3	43
202	Photonic topological phase transition on demand. <i>Nanophotonics</i> , 2019 , 8, 1349-1356	6.3	11
201	Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. <i>Advanced Materials</i> , 2019 , 31, e1805513	24	111
200	Tuning Topology of Photonic Systems with Transparent Conducting Oxides. <i>ACS Photonics</i> , 2019 , 6, 192	26.13930	06
199	Roadmap on metasurfaces. Journal of Optics (United Kingdom), 2019, 21, 073002	1.7	69
198	Strontium Niobate for Near-Infrared Plasmonics. <i>Advanced Optical Materials</i> , 2019 , 7, 1900401	8.1	
197	Colors with plasmonic nanostructures: A full-spectrum review. <i>Applied Physics Reviews</i> , 2019 , 6, 041308	17.3	69
196	Optical Properties of MXenes 2019 , 327-346		7
195	Laser Color Printing on Semicontinuous Silver Films 2019 ,		1
194	Achieving full-color generation with polarization-tunable perfect light absorption. <i>Optical Materials Express</i> , 2019 , 9, 779	2.6	28

(2018-2019)

193	Laser-induced color printing on semicontinuous silver films: red, green and blue. <i>Optical Materials Express</i> , 2019 , 9, 1528	2.6	7
192	Feature issue introduction: Metamaterials, Photonic Crystals and Plasmonics. <i>Optical Materials Express</i> , 2019 , 9, 2400	2.6	1
191	Nonlinearities and carrier dynamics in refractory plasmonic TiN thin films. <i>Optical Materials Express</i> , 2019 , 9, 3911	2.6	7
190	Near-zero-index materials for photonics. <i>Nature Reviews Materials</i> , 2019 , 4, 742-760	73.3	102
189	Photonic Spin Hall Effect in Robust Phase Gradient Metasurfaces Utilizing Transition Metal Nitrides. <i>ACS Photonics</i> , 2019 , 6, 99-106	6.3	25
188	Roadmap on plasmonics. Journal of Optics (United Kingdom), 2018, 20, 043001	1.7	174
187	Low-loss plasmon-assisted electro-optic modulator. <i>Nature</i> , 2018 , 556, 483-486	50.4	186
186	Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media. <i>Physical Review Letters</i> , 2018 , 120, 043902	7.4	50
185	Dynamic Control of Nanocavities with Tunable Metal Oxides. <i>Nano Letters</i> , 2018 , 18, 740-746	11.5	31
184	Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene). ACS Photonics, 2018, 5, 1115-1	1823	162
183	Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection. ACS Photonics, 2018, 5, 692-698	6.3	39
182	New Journal prize to recognize the best paper from an emerging researcher: editorial. <i>Optical Materials Express</i> , 2018 , 8, 1695	2.6	2
181	Accelerating light with metasurfaces. <i>Optica</i> , 2018 , 5, 678	8.6	21
180	Ultrathin and multicolour optical cavities with embedded metasurfaces. <i>Nature Communications</i> , 2018 , 9, 2673	17.4	66
179	Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides. <i>Optical Materials Express</i> , 2018 , 8, 3392	2.6	25
178	Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates. <i>Optica</i> , 2018 , 5, 1557	8.6	18
177	Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems. <i>Physical Review Letters</i> , 2018 , 121, 253901	7.4	136

175	On-Chip Hybrid Photonic-Plasmonic Waveguides with Ultrathin Titanium Nitride Films. <i>ACS Photonics</i> , 2018 , 5, 4423-4431	6.3	22
174	Material platforms for optical metasurfaces. <i>Nanophotonics</i> , 2018 , 7, 959-987	6.3	90
173	High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface. <i>ACS Nano</i> , 2018 , 12, 5376-5384	16.7	36
172	Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. <i>ACS Energy Letters</i> , 2018 , 3, 1578-1583	20.1	20
171	Controlling the Plasmonic Properties of Ultrathin TiN Films at the Atomic Level. <i>ACS Photonics</i> , 2018 , 5, 2816-2824	6.3	51
170	Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas. <i>Nano Letters</i> , 2018 , 18, 4837-4844	11.5	78
169	Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide. <i>Advanced Optical Materials</i> , 2017 , 5, 1600717	8.1	30
168	Lasing Action with Gold Nanorod Hyperbolic Metamaterials. ACS Photonics, 2017, 4, 674-680	6.3	34
167	Titanium nitride based hybrid plasmonic-photonic waveguides for on-chip plasmonic interconnects 2017 ,		1
166	Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. <i>Advanced Optical Materials</i> , 2017 , 5, 1601031	8.1	147
165	Temperature-Dependent Optical Properties of Single Crystalline and Polycrystalline Silver Thin Films. <i>ACS Photonics</i> , 2017 , 4, 1083-1091	6.3	38
164	Pancharatnam B erry Phase Manipulating Metasurface for Visible Color Hologram Based on Low Loss Silver Thin Film. <i>Advanced Optical Materials</i> , 2017 , 5, 1700196	8.1	43
163	Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films. <i>ACS Photonics</i> , 2017 , 4, 1413-1420	6.3	91
162	Optical Properties of Plasmonic Ultrathin TiN Films. Advanced Optical Materials, 2017, 5, 1700065	8.1	70
161	Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. <i>Nature Communications</i> , 2017 , 8, 15829	17.4	53
160	Evolution of Metallicity in Vanadium Dioxide by Creation of Oxygen Vacancies. <i>Physical Review Applied</i> , 2017 , 7,	4.3	65
159	High-Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications. <i>Advanced Materials</i> , 2017 , 29, 1605177	24	64
158	Enhanced Graphene Photodetector with Fractal Metasurface. <i>Nano Letters</i> , 2017 , 17, 57-62	11.5	84

157	Patterned multilayer metamaterial for fast and efficient photon collection from dipolar emitters. <i>Optics Letters</i> , 2017 , 42, 3968-3971	3	2
156	Large-Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars. <i>Advanced Optical Materials</i> , 2017 , 5, 1700552	8.1	73
155	Electron spin contrast of Purcell-enhanced nitrogen-vacancy ensembles in nanodiamonds. <i>Physical Review B</i> , 2017 , 96,	3.3	16
154	Solar-Energy Harvesting: Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride (Advanced Optical Materials 15/2017). <i>Advanced Optical Materials</i> , 2017 , 5,	8.1	2
153	Nanolasers Enabled by Metallic Nanoparticles: From Spasers to Random Lasers. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1700212	8.3	50
152	Thermophotovoltaics: Large-Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars (Advanced Optical Materials 22/2017). <i>Advanced Optical Materials</i> , 2017 , 5,	8.1	3
151	Ultra-thin plasmonic metal nitrides: Tailoring optical properties to photonic applications 2017,		1
150	Optical Properties of Ultrathin Plasmonic TiN Films 2017,		3
149	Hybrid plasmonic waveguides formed by metal coating of dielectric ridges. <i>Optics Express</i> , 2017 , 25, 12,	29,5 ₅ -12	3 0 3
148	Material platforms for integrated quantum photonics. <i>Optical Materials Express</i> , 2017 , 7, 111	2.6	77
147	Surface-plasmon opto-magnetic field enhancement for all-optical magnetization switching. <i>Optical Materials Express</i> , 2017 , 7, 4316	2.6	25
146	Feature issue introduction: material platforms and experimental approaches for quantum nanophotonics. <i>Optical Materials Express</i> , 2017 , 7, 651	2.6	
145	Active Metamaterials Based on Monolayer Titanium Carbide MXene for Random Lasing 2017,		2
144	Broadband hot electron generation for solar energy conversion with plasmonic titanium nitride 2017 ,		1
143	Dynamic nanophotonics [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2017 , 34, 95	1.7	24
142	Temperature-dependent optical properties of gold thin films. Optical Materials Express, 2016, 6, 2776	2.6	105
141	Enhanced Nonlinear Refractive Index in ENear-Zero Materials. <i>Physical Review Letters</i> , 2016 , 116, 23390	1 7.4	224
140	APPLIED PHYSICS. Plasmonicsturning loss into gain. <i>Science</i> , 2016 , 351, 334-5	33.3	56

139	Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. <i>Optica</i> , 2016 , 3, 339	98.6	112
138	Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. <i>Nature Nanotechnology</i> , 2016 , 11, 53-9	28.7	177
137	Lasing Action in Gold Nanorod Hyperbolic Metamaterials 2016,		4
136	Transient Nonlinear Refraction Measurements of Titanium Nitride Thin Films 2016,		1
135	Quiet revolutions in optical materials enable breakthrough technologies: editorial. <i>Optical Materials Express</i> , 2016 , 6, 288	2.6	2
134	Implementation of Metasurface Based Nano-Cavities 2016 ,		1
133	Electron energy loss spectroscopy of plasmon resonances in titanium nitride thin films. <i>Applied Physics Letters</i> , 2016 , 108, 171107	3.4	14
132	Angled physical vapor deposition techniques for non-conformal thin films and three-dimensional structures. <i>MRS Communications</i> , 2016 , 6, 17-22	2.7	11
131	Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials. <i>Nano Letters</i> , 2016 , 16, 2471-7	11.5	50
130	Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis. <i>Nanophotonics</i> , 2016 , 5, 112-133	6.3	84
129	Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface. <i>ACS Nano</i> , 2016 , 10, 9326-9333	16.7	43
128	. Proceedings of the IEEE, 2016 , 104, 2270-2287	14.3	19
127	Roadmap on optical metamaterials. Journal of Optics (United Kingdom), 2016, 18, 093005	1.7	89
126	Nanoparticle plasmonics: going practical with transition metal nitrides. <i>Materials Today</i> , 2015 , 18, 227-2	2 37 1.8	243
125	Zinc Oxide Based Plasmonic Multilayer Resonator: Localized and Gap Surface Plasmon in the Infrared. <i>ACS Photonics</i> , 2015 , 2, 1224-1230	6.3	38
124	Finite-width plasmonic waveguides with hyperbolic multilayer cladding. <i>Optics Express</i> , 2015 , 23, 9681-9	93.3	41
123	Ultrabroadband terahertz conductivity of highly doped ZnO and ITO. <i>Optical Materials Express</i> , 2015 , 5, 566	2.6	27
122	Gyroidal titanium nitride as nonmetallic metamaterial. <i>Optical Materials Express</i> , 2015 , 5, 1316	2.6	18

121	Transparent conducting oxides for electro-optical plasmonic modulators. <i>Nanophotonics</i> , 2015 , 4, 165-1	18653	100
120	Graphene: A Dynamic Platform for Electrical Control of Plasmonic Resonance. <i>Nanophotonics</i> , 2015 , 4, 214-223	6.3	51
119	Color Hologram Generation Using a Pancharatnam-Berry Phase Manipulating Metasurface 2015 ,		1
118	Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. <i>Optica</i> , 2015 , 2, 616	8.6	190
117	Effective third-order nonlinearities in metallic refractory titanium nitride thin films. <i>Optical Materials Express</i> , 2015 , 5, 2395	2.6	40
116	Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2015 , 32, 121	1.7	92
115	Adiabatically tapered hyperbolic metamaterials for dispersion control of high-k waves. <i>Nano Letters</i> , 2015 , 15, 498-505	11.5	24
114	Plasmonics on the slope of enlightenment: the role of transition metal nitrides. <i>Faraday Discussions</i> , 2015 , 178, 71-86	3.6	70
113	Development of epitaxial AlxSc1NN for artificially structured metal/semiconductor superlattice metamaterials. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 251-259	1.3	40
112	Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications. <i>Nanophotonics</i> , 2015 , 4, 269-276	6.3	79
111	Long-range plasmonic waveguides with hyperbolic cladding. <i>Optics Express</i> , 2015 , 23, 31109-19	3.3	38
110	Plasmon resonance in multilayer graphene nanoribbons. <i>Laser and Photonics Reviews</i> , 2015 , 9, 650-655	8.3	31
109	Plasmonics feature issue: publisher note. Optical Materials Express, 2015, 5, 2978	2.6	1
108	Effective third-order nonlinearities in metallic refractory titanium nitride thin films: publisher note. <i>Optical Materials Express</i> , 2015 , 5, 2587	2.6	1
107	Materials science. All that glitters need not be gold. <i>Science</i> , 2015 , 347, 1308-10	33.3	49
106	Feature issue introduction: plasmonics. <i>Optical Materials Express</i> , 2015 , 5, 2698	2.6	
105	Quasi-coherent thermal emitter based on refractory plasmonic materials. <i>Optical Materials Express</i> , 2015 , 5, 2721	2.6	57
104	Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial. <i>Laser and Photonics Reviews</i> , 2015 , 9, 120-127	8.3	75

103	Applied physics. Refractory plasmonics. <i>Science</i> , 2014 , 344, 263-4	33.3	263
102	Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 7546-51	11.5	164
101	Electrical modulation of fano resonance in plasmonic nanostructures using graphene. <i>Nano Letters</i> , 2014 , 14, 78-82	11.5	165
100	Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles. <i>ACS Nano</i> , 2014 , 8, 9035-43	16.7	62
99	TiN/(Al,Sc)N metal/dielectric superlattices and multilayers as hyperbolic metamaterials in the visible spectral range. <i>Physical Review B</i> , 2014 , 90,	3.3	41
98	Plasmonic waveguides cladded by hyperbolic metamaterials. <i>Optics Letters</i> , 2014 , 39, 4663-6	3	44
97	Efficient light bending with isotropic metamaterial Huygens' surfaces. <i>Nano Letters</i> , 2014 , 14, 2491-7	11.5	257
96	Alternative Plasmonic Materials. <i>Handbook of Surface Science</i> , 2014 , 4, 189-221		7
95	Empowering plasmonics and metamaterials technology with new material platforms. <i>MRS Bulletin</i> , 2014 , 39, 461-468	3.2	39
94	Titanium Nitride as a Refractory Plasmonic Material for High Temperature Applications 2014 ,		1
93	CMOS Compatible Ultra-Compact Modulator 2014 ,		1
92	Optical absorption of hyperbolic metamaterial with stochastic surfaces. <i>Optics Express</i> , 2014 , 22, 8893-9	99.13	14
91	Experimental demonstration of titanium nitride plasmonic interconnects. <i>Optics Express</i> , 2014 , 22, 1223	38 ,.4 7	65
90	Refractory plasmonics with titanium nitride: broadband metamaterial absorber. <i>Advanced Materials</i> , 2014 , 26, 7959-65	24	432
89	Plasmonic modulator using CMOS-compatible material platform 2014,		1
88	High-power operation of silica-based Raman fiber amplifier at 2147 nm. <i>Optics Express</i> , 2014 , 22, 28383	-9 .3	19
87	Alternative Plasmonic Materials: Alternative Plasmonic Materials: Beyond Gold and Silver (Adv. Mater. 24/2013). <i>Advanced Materials</i> , 2013 , 25, 3258-3258	24	8
86	Electronic and optical properties of ScN and (Sc,Mn)N thin films deposited by reactive DC-magnetron sputtering. <i>Journal of Applied Physics</i> , 2013 , 114, 063519	2.5	38

85	Planar photonics with metasurfaces. <i>Science</i> , 2013 , 339, 1232009	33.3	1814
84	Optical Properties of Gallium-Doped Zinc Oxide Low-Loss Plasmonic Material: First-Principles Theory and Experiment. <i>Physical Review X</i> , 2013 , 3,	9.1	40
83	Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition. <i>Applied Physics A: Materials Science and Processing</i> , 2013 , 110, 929-934	2.6	22
82	Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). <i>Nano Letters</i> , 2013 , 13, 2857-63	11.5	153
81	Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25, 3264-94	24	1395
80	Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. <i>Nano Letters</i> , 2013 , 13, 6078-83	11.5	199
79	Titanium nitride as a plasmonic material for visible and near-infrared wavelengths [erratum]. <i>Optical Materials Express</i> , 2013 , 3, 1658	2.6	5
78	Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials. <i>Optics Express</i> , 2013 , 21, 27326-37	3.3	98
77	Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2013 , 19, 4601907-4601907	3.8	68
76	Nanostructured Transparent Conductive Oxide Films for Plasmonic Applications 2013,		2
75	Reflecting upon the losses in plasmonics and metamaterials. MRS Bulletin, 2012, 37, 768-779	3.2	172
74	Electrically tunable damping of plasmonic resonances with graphene. <i>Nano Letters</i> , 2012 , 12, 5202-6	11.5	2 60
73	Modern Trends in Metamaterial Applications. Advances in OptoElectronics, 2012, 2012, 1-2	0.5	1
72	Metal Nitrides for Plasmonic Applications 2012 ,		2
71	Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 8834-8	11.5	252
70	Broadband light bending with plasmonic nanoantennas. <i>Science</i> , 2012 , 335, 427	33.3	1078
69	Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. <i>Applied Physics B: Lasers and Optics</i> , 2012 , 107, 285-291	1.9	108
68	Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. <i>Optical Materials Express</i> , 2012 , 2, 478	2.6	468

67	Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. <i>Optics Express</i> , 2012 , 20, 8100-16	3.3	125
66	Electrically Tunable Plasmonic Resonances with Graphene 2012,		3
65	Nitrides as alternative materials for localized surface plasmon applications 2012,		2
64	Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. <i>Optical Materials Express</i> , 2011 , 1, 1090	2.6	586
63	Materials science. Low-loss plasmonic metamaterials. <i>Science</i> , 2011 , 331, 290-1	33.3	1035
62	Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 103, 553-558	1.9	54
61	Characterization of nanodiamonds for metamaterial applications. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 105, 191-195	1.9	13
60	A comparative study of semiconductor-based plasmonic metamaterials. <i>Metamaterials</i> , 2011 , 5, 1-7		87
59	Studies of plasmonic hot-spot translation by a metal-dielectric layered superlens 2011,		1
58	Semiconductor plasmonic metamaterials for near-infrared and telecommunication wavelength 2010 ,		4
57	Demonstration of scattering suppression in retardation-based plasmonic nanoantennas. <i>Optics Express</i> , 2010 , 18, 14802-11	3.3	11
56	Semiconductors for plasmonics and metamaterials. <i>Physica Status Solidi - Rapid Research Letters</i> , 2010 , 4, 295-297	2.5	94
55	Optimizing performance of plasmonic devices for photonic circuits. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 100, 341-346	2.6	5
54	The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 100, 365-374	2.6	10
53	Toward superlensing with metaldielectric composites and multilayers. <i>Applied Physics B: Lasers and Optics</i> , 2010 , 100, 93-100	1.9	27
52	Engineering photonic density of states using metamaterials. <i>Applied Physics B: Lasers and Optics</i> , 2010 , 100, 215-218	1.9	309
51	Searching for better plasmonic materials. <i>Laser and Photonics Reviews</i> , 2010 , 4, 795-808	8.3	1346
50	Excitation of fluorescent nanoparticles by channel plasmon polaritons propagating in V-grooves. <i>Applied Physics Letters</i> , 2009 , 95, 203102	3.4	3

(2008-2009)

49	Plasmonic metasurfaces for waveguiding and field enhancement. <i>Laser and Photonics Reviews</i> , 2009 , 3, 575-590	8.3	34
48	Plasmonic components fabrication via nanoimprint. <i>Journal of Optics</i> , 2009 , 11, 114001		84
47	Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. <i>Physical Review Letters</i> , 2009 , 102, 246802	7.4	88
46	Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2009 , 26, 121	1.7	7
45	Two-photon imaging of field enhancement by groups of gold nanostrip antennas. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2009 , 26, 2199	1.7	3
44	Efficient unidirectional ridge excitation of surface plasmons. <i>Optics Express</i> , 2009 , 17, 7228-32	3.3	85
43	Thin film Ag superlens towards lab-on-a-chip integration. Optics Express, 2009, 17, 22543-52	3.3	18
42	Fabricating Plasmonic Components for Nano- and Meta-Photonics. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2009 , 209-221	0.2	
41	Efficiency of local surface plasmon polariton excitation on ridges. <i>Physical Review B</i> , 2008 , 78,	3.3	72
40	Channel plasmon polariton propagation in nanoimprinted V-groove waveguides. <i>Optics Letters</i> , 2008 , 33, 2800-2	3	31
39	Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, 1585	1.7	11
38	Refracting surface plasmon polaritons with nanoparticle arrays. <i>Optics Express</i> , 2008 , 16, 3924-30	3.3	35
37	Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. <i>Optics Express</i> , 2008 , 16, 5252-60	3.3	149
36	Compact plasmonic variable optical attenuator. <i>Optics Express</i> , 2008 , 16, 15546-52	3.3	22
35	Two-photon mapping of localized field enhancements in thin nanostrip antennas. <i>Optics Express</i> , 2008 , 16, 17302-9	3.3	24
34	Nanoantenna array-induced fluorescence enhancement and reduced lifetimes. <i>New Journal of Physics</i> , 2008 , 10, 125022	2.9	97
33	Efficiency of local surface plasmon polariton excitation on ridges 2008,		2
32	Slow-light plasmonic metal nano-strip resonators 2008,		1

31	Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration. <i>Physical Review B</i> , 2008 , 77,	3.3	57
30	Plasmonic nanoantenna arrays for the visible. <i>Metamaterials</i> , 2008 , 2, 45-51		102
29	Fabrication of optical negative-index metamaterials: Recent advances and outlook. <i>Metamaterials</i> , 2008 , 2, 1-17		212
28	Enhanced localized fluorescence in plasmonic nanoantennae. <i>Applied Physics Letters</i> , 2008 , 92, 043101	3.4	156
27	V-groove plasmonic waveguides fabricated by nanoimprint lithography. <i>Journal of Vacuum Science</i> & <i>Technology B</i> , 2007 , 25, 2649		25
26	Nanoimprinted reflecting gratings for long-range surface plasmon polaritons. <i>Microelectronic Engineering</i> , 2007 , 84, 895-898	2.5	12
25	A negative permeability material at red light. Optics Express, 2007, 15, 1076-83	3.3	161
24	Surface plasmon polariton beam focusing with parabolic nanoparticle chains. <i>Optics Express</i> , 2007 , 15, 6576-82	3.3	65
23	Near-field excitation of nanoantenna resonance. <i>Optics Express</i> , 2007 , 15, 13682-8	3.3	60
22	Localized field enhancements in fractal shaped periodic metal nanostructures. <i>Optics Express</i> , 2007 , 15, 15234-41	3.3	21
21	Fabrication of plasmonic waveguides for device applications 2007,		2
20	Theoretical analysis of ridge gratings for long-range surface plasmon polaritons. <i>Physical Review B</i> , 2006 , 73,	3.3	35
19	Directional Couplers Using Long-Range Surface Plasmon Polariton Waveguides. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2006 , 12, 1233-1241	3.8	49
18	Long-range surface plasmon polariton nanowire waveguides for device applications. <i>Optics Express</i> , 2006 , 14, 314-9	3.3	102
17	Compact Bragg gratings for long-range surface plasmon polaritons. <i>Journal of Lightwave Technology</i> , 2006 , 24, 912-918	4	82
16	Integrated optical components utilizing long-range surface plasmon polaritons. <i>Journal of Lightwave Technology</i> , 2005 , 23, 413-422	4	324
15	Propagation of long-range surface plasmon polaritons in photonic crystals. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2005 , 22, 2027	1.7	12
14	Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons. <i>Optics Express</i> , 2005 , 13, 4237-43	3.3	49

LIST OF PUBLICATIONS

13	Photonic bandgap structures for long-range surface plasmon polaritons. <i>Optics Communications</i> , 2005 , 250, 328-333	2	42
12	Computational lens for the near field. <i>Physical Review Letters</i> , 2004 , 92, 163903	7.4	41
11	Local excitation of surface plasmon polaritons in random surface nanostructures. <i>Optics Communications</i> , 2003 , 223, 25-29	2	4
10	Surface plasmon polariton waveguiding in random surface nanostructures. <i>Journal of Microscopy</i> , 2003 , 209, 209-13	1.9	7
9	Experimental studies of surface plasmon polariton band gap effect. <i>Journal of Microscopy</i> , 2003 , 210, 324-9	1.9	16
8	Direct mapping of light propagation in photonic crystal waveguides. <i>Optics Communications</i> , 2002 , 212, 51-55	2	25
7	Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics. <i>Physical Review B</i> , 2002 , 66,	3.3	65
6	Low-loss silicon-on-insulator photonic crystal waveguides. <i>Electronics Letters</i> , 2002 , 38, 274	1.1	50
5	Bend loss in surface plasmon polariton band-gap structures. <i>Applied Physics Letters</i> , 2001 , 79, 1076-107	'8 3.4	54
4	Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene)		1
3	MXenes for Photonics. ACS Photonics,	6.3	5
2	Multimetallic Metasurfaces for Enhanced Electrocatalytic Oxidations in Direct Alcohol Fuel Cells. Laser and Photonics Reviews,2200137	8.3	1
1	Thickness-Dependent Drude Plasma Frequency in Transdimensional Plasmonic TiN. Nano Letters,	11.5	3