
Joseph Bramante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1871212/publications.pdf Version: 2024-02-01

IOSEDH RDAMANTE

#	Article	IF	CITATIONS
1	Accelerating composite dark matter discovery with nuclear recoils and the Migdal effect. Physical Review D, 2022, 105, .	4.7	18
2	The Forward Physics Facility: Sites, experiments, and physics potential. Physics Reports, 2022, 968, 1-50.	25.6	57
3	Scattering Searches for Dark Matter in Subhalos: Neutron Stars, Cosmic Rays, and Old Rocks. Physical Review Letters, 2022, 128, .	7.8	28
4	Gravitational waves from dark sectors, oscillating inflatons, and mass boosted dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 043.	5.4	10
5	Dark matter, destroyer of worlds: neutrino, thermal, and existential signatures from black holes in the Sun and Earth. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 026.	5.4	30
6	Etched plastic searches for dark matter. Physical Review D, 2021, 103, .	4.7	13
7	Nuclear fusion inside dark matter. Physical Review D, 2021, 103, .	4.7	13
8	Detecting composite dark matter with long-range and contact interactions in gas clouds. Physical Review D, 2021, 103, .	4.7	15
9	Electric But Not Eclectic: Thermal Relic Dark Matter for the XENON1T Excess. Physical Review Letters, 2020, 125, 161805.	7.8	45
10	Warming nuclear pasta with dark matter: kinetic and annihilation heating of neutron star crusts. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 038-038.	5.4	56
11	Superradiant searches for dark photons in two stage atomic transitions. Physical Review D, 2020, 101, .	4.7	4
12	Material matter effects in gravitational UV/IR mixing. Physical Review D, 2020, 101, .	4.7	5
13	Terrestrial and martian heat flow limits on dark matter. Physical Review D, 2020, 101, .	4.7	26
14	BhoonahetÂal.Reply. Physical Review Letters, 2020, 124, 029002.	7.8	0
15	Anomalous anomalies from virtual black holes. Physical Review D, 2020, 101, .	4.7	3
16	Foraging for dark matter in large volume liquid scintillator neutrino detectors with multiscatter events. Physical Review D, 2019, 99, .	4.7	31
17	Galactic Center gas clouds and novel bounds on ultralight dark photon, vector portal, strongly interacting, composite, and super-heavy dark matter. Physical Review D, 2019, 100, .	4.7	40
18	Supernovae sparked by dark matter in white dwarfs. Physical Review D, 2019, 100, .	4.7	29

Joseph Bramante

#	Article	IF	CITATIONS
19	Dark matter astrometry at underground detectors with multiscatter events. Physical Review D, 2019, 100, .	4.7	18
20	Saturated overburden scattering and the multiscatter frontier: Discovering dark matter at the Planck mass and beyond. Physical Review D, 2018, 98, .	4.7	44
21	Calorimetric Dark Matter Detection with Galactic Center Gas Clouds. Physical Review Letters, 2018, 121, 131101.	7.8	40
22	Searching for dark matter with neutron star mergers and quiet kilonovae. Physical Review D, 2018, 97,	4.7	47
23	Multiscatter stellar capture of dark matter. Physical Review D, 2017, 96, .	4.7	72
24	Using HAWC to discover invisible pulsars. Physical Review D, 2017, 96, .	4.7	81
25	Superheavy thermal dark matter and primordial asymmetries. Journal of High Energy Physics, 2017, 2017, 1.	4.7	44
26	Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos. Physical Review Letters, 2017, 119, 131801.	7.8	113
27	Type la supernovae ignition, galactic center pulsar implosions, and fast radio bursts from asymmetric dark matter. AIP Conference Proceedings, 2016, , .	0.4	Ο
28	Inelastic frontier: Discovering dark matter at high recoil energy. Physical Review D, 2016, 94, .	4.7	45
29	Boosted Higgs bosons from chromomagneticb's:bbÂ⁻hat high luminosity. Physical Review D, 2016, 93, .	4.7	7
30	Towards the final word on neutralino dark matter. Physical Review D, 2016, 93, .	4.7	59
31	ON THE <i>r</i> -PROCESS ENRICHMENT OF DWARF SPHEROIDAL GALAXIES. Astrophysical Journal, 2016, 826, 57.	4.5	34
32	Higgs portals to pulsar collapse. Physical Review D, 2015, 91, .	4.7	25
33	Dark Matter Ignition of Type Ia Supernovae. Physical Review Letters, 2015, 115, 141301.	7.8	52
34	Relic neutralino surface at a 100ÂTeV collider. Physical Review D, 2015, 91, .	4.7	35
35	Proton annihilation at hadron colliders and Kamioka: High energy versus high luminosity. Physical Review D, 2015, 91, .	4.7	8
36	Catching sparks from well-forged neutralinos. Physical Review D, 2014, 90, .	4.7	16

JOSEPH BRAMANTE

#	ARTICLE	IF	CITATIONS
37	Bounds on self-interacting fermion dark matter from observations of old neutron stars. Physical Review D, 2014, 89, .	4.7	63
38	Detecting Dark Matter with Imploding Pulsars in the Galactic Center. Physical Review Letters, 2014, 113, 191301.	7.8	80
39	Constraints on bosonic dark matter from observation of old neutron stars. Physical Review D, 2013, 87, .	4.7	73
40	STERILE NEUTRINO PRODUCTION THROUGH A MATTER EFFECT ENHANCEMENT AT LONG BASELINES. International Journal of Modern Physics A, 2013, 28, 1350067.	1.5	1
41	Collider searches for fermiophobic gauge bosons. Physical Review D, 2011, 84, .	4.7	7