Hannah E Smithson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1871048/publications.pdf Version: 2024-02-01

HANNAH E SMITHSON

#	Article	IF	CITATIONS
1	Sensory, computational and cognitive components of human colour constancy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1329-1346.	1.8	179
2	Vision science and adaptive optics, the state of the field. Vision Research, 2017, 132, 3-33.	0.7	115
3	Specificity of Cone Inputs to Macaque Retinal Ganglion Cells. Journal of Neurophysiology, 2006, 95, 837-849.	0.9	109
4	Modulation of the face- and body-selective visual regions by the motion and emotion of point-light face and body stimuli. NeuroImage, 2012, 59, 1700-1712.	2.1	88
5	Photostimulator allowing independent control of rods and the three cone types. Visual Neuroscience, 2004, 21, 263-267.	0.5	79
6	Colour constancy in context: Roles for local adaptation and levels of reference. Journal of Vision, 2004, 4, 3.	0.1	73
7	Is the S-opponent chromatic sub-system sluggish?. Vision Research, 2004, 44, 2919-2929.	0.7	57
8	Human cone light adaptation: From behavioral measurements to molecular mechanisms. Journal of Vision, 2006, 6, 5-5.	0.1	56
9	Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input?. Visual Neuroscience, 2006, 23, 441-446.	0.5	28
10	Do masks terminate the icon?. Quarterly Journal of Experimental Psychology, 2006, 59, 150-160.	0.6	27
11	S-cone psychophysics. Visual Neuroscience, 2014, 31, 211-225.	0.5	27
12	Beyond scattering and absorption: Perceptual unmixing of translucent liquids. Journal of Vision, 2018, 18, 18.	0.1	24
13	Demonstrating a multi-primary high dynamic range display system for vision experiments. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, A271.	0.8	22
14	Low levels of specularity support operational color constancy, particularly when surface and illumination geometry can be inferred. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, A306.	0.8	21
15	A three-dimensional color space from the 13th century. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A346.	0.8	20
16	Low level visual features support robust material perception in the judgement of metallicity. Scientific Reports, 2021, 11, 16396.	1.6	18
17	The loss of the PDE6 deactivating enzyme, RGS9, results in precocious light adaptation at low light levels. Journal of Vision, 2008, 8, 10.	0.1	16
18	Is there brief temporal buffering of successive visual inputs?. Quarterly Journal of Experimental Psychology, 2011, 64, 767-791.	0.6	16

HANNAH E SMITHSON

#	Article	IF	CITATIONS
19	Slow updating of the achromatic point after a change in illumination. Journal of Vision, 2012, 12, 19-19.	0.1	15
20	Hyperspectral environmental illumination maps: characterizing directional spectral variation in natural environments. Optics Express, 2019, 27, 32277.	1.7	15
21	Residual cone vision without Â-transducin. Journal of Vision, 2007, 7, 8-8.	0.1	14
22	Compatible and incompatible representations in visual sensory storage. Journal of Vision, 2012, 12, 1-1.	0.1	13
23	Context-dependent judgments of color that might allow color constancy in scenes with multiple regions of illumination. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A247.	0.8	13
24	Color-coordinate system from a 13th-century account of rainbows. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A341.	0.8	12
25	Latency characteristics of the short-wavelength-sensitive cones and their associated pathways. Journal of Vision, 2009, 9, 5-5.	0.1	11
26	Not all aberrations are equal: Reading impairment depends on aberration type and magnitude. Journal of Vision, 2011, 11, 20-20.	0.1	11
27	Distinct Contributions to Facial Emotion Perception of Foveated versus Nonfoveated Facial Features. Emotion Review, 2013, 5, 30-35.	2.1	10
28	Discrimination of spectral reflectance under environmental illumination. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, B244.	0.8	10
29	Accounting for the phase, spatial frequency and orientation demands of the task improves metrics based on the visual Strehl ratio. Vision Research, 2013, 90, 57-67.	0.7	8
30	A medieval multiverse?: Mathematical modelling of the thirteenth century universe of Robert Grosseteste. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140025.	1.0	8
31	Motion of glossy objects does not promote separation of lighting and surface colour. Royal Society Open Science, 2017, 4, 171290.	1.1	8
32	The effect of notched noise on flicker detection and discrimination. Journal of Vision, 2009, 9, 21-21.	0.1	7
33	Critical band masking reveals the effects of optical distortions on the channel mediating letter identification. Frontiers in Psychology, 2014, 5, 1060.	1.1	7
34	Visualization of acoustic waves in air and subsequent audio recovery with a high-speed schlieren imaging system: Experimental and computational development of a schlieren microphone. Optics and Lasers in Engineering, 2018, 107, 182-193.	2.0	7
35	Compact, modular and in-plane AOSLO for high-resolution retinal imaging. Biomedical Optics Express, 2018, 9, 4275.	1.5	6
36	Transitions between color categories mapped with a reverse Stroop task. Visual Neuroscience, 2006, 23, 453-460.	0.5	5

HANNAH E SMITHSON

#	Article	IF	CITATIONS
37	Different aberrations raise contrast thresholds for single-letter identification in line with their effect on cross-correlation-based confusability. Journal of Vision, 2013, 13, 12-12.	0.1	4
38	Bow-shaped caustics from conical prisms: a 13th-century account of rainbow formation from Robert Grosseteste's De iride. Applied Optics, 2017, 56, G197.	0.9	4
39	Hue shifts produced by temporal asymmetries in chromatic signals. Journal of Vision, 2017, 17, 2.	0.1	4
40	Emulated retinal image capture (ERICA) to test, train and validate processing of retinal images. Scientific Reports, 2021, 11, 11225.	1.6	3
41	History: A medieval multiverse. Nature, 2014, 507, 161-163.	13.7	2
42	All the colours of the rainbow. Nature Physics, 2014, 10, 540-542.	6.5	2
43	Self-organising coordinate transformation with peaked and monotonic gain modulation in the primate dorsal visual pathway. PLoS ONE, 2018, 13, e0207961.	1.1	2
44	Are hue and saturation carried in different neural channels?. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, B299.	0.8	2
45	Breaking illuminant metamerism using directional spectral variation in natural environments: dichromats might benefit more than trichromats. Journal of Vision, 2019, 19, 9.	0.1	2
46	Listening between the lines: medieval and modern science. Palgrave Communications, 2016, 2, .	4.7	1
47	A Modeling Study of the Emergence of Eye Position Gain Fields Modulating the Responses of Visual Neurons in the Brain. Frontiers in Neural Circuits, 2020, 14, 30.	1.4	1
48	Perceptual Organization of Colour. , 0, , .		1
49	Recording fixational eye movements with a new AOSLO: simulation, measurement and evaluation. Journal of Vision, 2017, 17, 34.	0.1	1
50	Guest Editors' Foreword: Proceedings of the 19th Biennial Symposium of the International Colour Vision Society. Held July 2007 Belém, Brazil. Visual Neuroscience, 2008, 25, 229-230.	0.5	0
51	Guest Editorial: Proceedings of the 20th Biennial Symposium of the International Colour Vision Society July 2009, Braga, Portugal. Ophthalmic and Physiological Optics, 2010, 30, 419-420.	1.0	0
52	All the Colours of the Rainbow: Robert Grosseteste's Three-Dimensional Colour Space. , 2016, , 59-84.		0
53	Delayed S-cone sensitivity losses following the onset of intense yellow backgrounds linked to the lifetime of a photobleaching product?. Journal of Vision, 2018, 18, 12.	0.1	0
54	Raw high-speed schlieren footage of acoustic waves in air for subsequent computational analysis and audio recovery. Data in Brief, 2018, 19, 1647-1649.	0.5	0

#	Article	IF	CITATIONS
55	Hand-Foot Coupling: An Advantage for Crossed Legs. Perception, 2019, 48, 356-359.	0.5	0
56	Hyperspectral characterisation of natural illumination in woodland and forest environments. , 2021, , .		0
57	Modeling perceptual discrimination of surface color using image chromatic statistics and convolutional neural networks. Journal of Vision, 2021, 21, 2742.	0.1	Ο
58	When the brightest is not the best: Illuminant estimation based on highlight geometry. Journal of Vision, 2017, 17, 139.	0.1	0
59	Simultaneous Optimisation of Confocal and Non-confocal Images in an AOSLO with a Reconfigurable Aperture Pattern. Communications in Computer and Information Science, 2020, , 410-419.	0.4	0