Hans-Juergen Butt

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/187073/hans-juergen-butt-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 156 30,343 550 h-index g-index citations papers 33,678 582 7.51 7.1 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
550	Fabrication of Stretchable Superamphiphobic Surfaces with Deformation-Induced Rearrangeable Structures <i>Advanced Materials</i> , 2022 , e2107901	24	6
549	Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream <i>Biomacromolecules</i> , 2022 ,	6.9	2
548	Contact angle hysteresis. Current Opinion in Colloid and Interface Science, 2022, 101574	7.6	5
547	Light-induced assembly of colloidal nanoparticles based on photo-controlled metalligand coordination 2022 , 1, 100004		1
546	Controlling supraparticle shape and structure by tuning colloidal interactions. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 1661-1670	9.3	4
545	Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy <i>Macromolecular Rapid Communications</i> , 2022 , e2100892	4.8	1
544	Adaptation and Recovery of A Styrene-Acrylic Acid Copolymer Surface to Water <i>Macromolecular Rapid Communications</i> , 2022 , e2100733	4.8	2
543	Ordering kinetics of a tapered copolymer based on isoprene and styrene <i>Journal of Chemical Physics</i> , 2022 , 156, 134904	3.9	1
542	Enhanced Condensation on Soft Materials through Bulk Lubricant Infusion (Adv. Funct. Mater. 17/2022). <i>Advanced Functional Materials</i> , 2022 , 32, 2270102	15.6	
541	Tuning the Charge of Sliding Water Drops <i>Langmuir</i> , 2022 , 38, 6224-6230	4	1
540	Flow profiles near receding three-phase contact lines: influence of surfactants. <i>Soft Matter</i> , 2021 , 17, 10090-10100	3.6	O
539	The Force Required to Detach a Rotating Particle from a Liquid-Fluid Interface. <i>Langmuir</i> , 2021 , 37, 130	01 2 -130	01∄
538	Flash Brillouin Scattering: A Confocal Technique for Measuring Glass Transitions at High Scan Rates. <i>ACS Photonics</i> , 2021 , 8, 531-539	6.3	2
537	Designing the shape of supraparticles by controlling the apparent contact angle and contact line friction of droplets. <i>Journal of Colloid and Interface Science</i> , 2021 , 588, 157-163	9.3	2
536	Electrospun nanocomposite fibers from lignin and iron oxide as supercapacitor material. <i>Journal of Materials Research and Technology</i> , 2021 , 12, 2153-2167	5.5	9
535	Irregular, nanostructured superhydrophobic surfaces: Local wetting and slippage monitored by fluorescence correlation spectroscopy. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	1
534	One-Step Synthesis of a Durable and Liquid-Repellent Poly(dimethylsiloxane) Coating. <i>Advanced Materials</i> , 2021 , 33, e2100237	24	24

533	Capillary Torque on a Particle Rotating at an Interface. Langmuir, 2021, 37, 7457-7463	4	5
532	Fabrication of Anticounterfeiting Nanocomposites with Multiple Security Features via Integration of a Photoresponsive Polymer and Upconverting Nanoparticles. <i>Advanced Functional Materials</i> , 2021 , 31, 2103908	15.6	20
531	Adsorption Kinetics of cis-1,4-Polyisoprene in Nanopores by In Situ Nanodielectric Spectroscopy. <i>Macromolecules</i> , 2021 , 54, 6267-6274	5.5	3
530	liquid-likelWater in Clathrates Induced by Hostluest Hydrogen Bonding. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 15751-15757	3.8	4
529	The challenge of lubricant-replenishment on lubricant-impregnated surfaces. <i>Advances in Colloid and Interface Science</i> , 2021 , 287, 102329	14.3	16
528	Water Mobility in the Interfacial Liquid Layer of Ice/Clay Nanocomposites. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7697-7702	16.4	3
527	Wassermobilitlin der grenzfliheninduzierten Schmelzschicht von Eis/Tonmineral-Nanokompositen. <i>Angewandte Chemie</i> , 2021 , 133, 7775-7781	3.6	0
526	Adaptation of a Styrene-Acrylic Acid Copolymer Surface to Water. <i>Langmuir</i> , 2021 , 37, 1571-1577	4	6
525	How a water drop removes a particle from a hydrophobic surface. Soft Matter, 2021, 17, 1746-1755	3.6	8
524	Optical Manipulation of Liquids by Thermal Marangoni Flow along the Air-Water Interfaces of a Superhydrophobic Surface. <i>Langmuir</i> , 2021 , 37, 8677-8686	4	2
523	Ru-Se Coordination: A New Dynamic Bond for Visible-Light-Responsive Materials. <i>Journal of the American Chemical Society</i> , 2021 , 143, 12736-12744	16.4	18
522	Fluorescence correlation spectroscopy to unravel the interactions between macromolecules in wine. <i>Food Chemistry</i> , 2021 , 352, 129343	8.5	5
521	Real-time monitoring of biomechanical activity in aphids by laser speckle contrast imaging. <i>Optics Express</i> , 2021 , 29, 28461-28480	3.3	0
520	Clathrate Adhesion Induced by Quasi-Liquid Layer. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 21293-21	3 <u>9</u> ,&	8
519	Wetting of the tarsal adhesive fluid determines underwater adhesion in ladybird beetles. <i>Journal of Experimental Biology</i> , 2021 , 224,	3	1
518	Super liquid repellent surfaces for anti-foaming and froth management. <i>Nature Communications</i> , 2021 , 12, 5358	17.4	5
517	Interactions between a responsive microgel monolayer and a rigid colloid: from soft to hard interfaces. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 16754-16766	3.6	0
516	Self-Recovery Superhydrophobic Surfaces 2021 , 39-61		

515	Shape-Designable Polyhedral Liquid Marbles/Plasticines Stabilized with Polymer Plates. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2001573	4.6	8
514	Anisotropic carrier diffusion in single MAPbI3 grains correlates to their twin domains. <i>Energy and Environmental Science</i> , 2020 , 13, 4168-4177	35.4	13
513	How Universal Is the Wetting Aging in 2D Materials. <i>Nano Letters</i> , 2020 , 20, 5670-5677	11.5	14
512	Adaptive Wetting of Polydimethylsiloxane. <i>Langmuir</i> , 2020 , 36, 7236-7245	4	18
511	Nanostructured polymer assemblies stabilize photoactivatable anticancer ruthenium complexes under physiological conditions. <i>Journal of Inorganic Biochemistry</i> , 2020 , 207, 111052	4.2	6
510	Submicrometer-Sized Roughness Suppresses Bacteria Adhesion. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 21192-21200	9.5	36
509	Versatile high-speed confocal microscopy using a single laser beam. <i>Review of Scientific Instruments</i> , 2020 , 91, 033706	1.7	2
508	Grafting Silicone at Room Temperature-a Transparent, Scratch-resistant Nonstick Molecular Coating. <i>Langmuir</i> , 2020 , 36, 4416-4431	4	32
507	Premelting-Induced Agglomeration of Hydrates: Theoretical Analysis and Modeling. <i>ACS Applied Materials & Description of Material</i>	9.5	15
506	Microdroplet Contaminants: When and Why Superamphiphobic Surfaces Are Not Self-Cleaning. <i>ACS Nano</i> , 2020 , 14, 3836-3846	16.7	23
505	Metallopolymer Organohydrogels with Photo-Controlled Coordination Crosslinks Work Properly Below 0 °C. <i>Advanced Materials</i> , 2020 , 32, e1908324	24	30
504	When and how self-cleaning of superhydrophobic surfaces works. <i>Science Advances</i> , 2020 , 6, eaaw9727	14.3	98
503	Probing Nanoparticle/Membrane Interactions by Combining Amphiphilic Diblock Copolymer Assembly and Plasmonics. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 742-750	3.4	2
502	Multiband Hypersound Filtering in Two-Dimensional Colloidal Crystals: Adhesion, Resonances, and Periodicity. <i>Nano Letters</i> , 2020 , 20, 1883-1889	11.5	20
501	Tapered copolymers of styrene and 4-vinylbenzocyclobutene via carbanionic polymerization for crosslinkable polymer films. <i>Journal of Polymer Science</i> , 2020 , 58, 181-192	2.4	
500	Shuffling gait motion of an aerodynamically driven wall-bound drop. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	2
499	Entangled Azobenzene-Containing Polymers with Photoinduced Reversible Solid-to-Liquid Transitions for Healable and Reprocessable Photoactuators. <i>Advanced Functional Materials</i> , 2020 , 30, 1906752	15.6	43
498	Reconfigurable Surfaces Based on Photocontrolled Dynamic Bonds. <i>Advanced Functional Materials</i> , 2020 , 30, 1907605	15.6	10

497	Solar-Thermal Energy Conversion and Storage Using Photoresponsive Azobenzene-Containing Polymers. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e1900413	4.8	25
496	Brownian Diffusion of Individual Janus Nanoparticles at Water/Oil Interfaces. ACS Nano, 2020 , 14, 1009	5£60/1(3 3
495	Water and Ice Nucleation on Solid Surfaces 2020 , 55-85		1
494	Photocontrolled Reconfigurable Surfaces: Reconfigurable Surfaces Based on Photocontrolled Dynamic Bonds (Adv. Funct. Mater. 26/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070174	15.6	
493	Toward Passive Defrosting with Heterogeneous Coatings. <i>Matter</i> , 2020 , 3, 981-983	12.7	2
492	Fighting against Drug-Resistant Tumors using a Dual-Responsive Pt(IV)/Ru(II) Bimetallic Polymer. <i>Advanced Materials</i> , 2020 , 32, e2004766	24	46
491	Interfacial Interactions During In Situ Polymer Imbibition in Nanopores. <i>Physical Review Letters</i> , 2020 , 125, 127802	7.4	8
490	Long Alkyl Side Chains Simultaneously Improve Mechanical Robustness and Healing Ability of a Photoswitchable Polymer. <i>Macromolecules</i> , 2020 , 53, 8562-8569	5.5	11
489	Onset of Elasto-capillary Bundling of Micropillar Arrays: A Direct Visualization. <i>Langmuir</i> , 2020 , 36, 1158	81 _‡ 115	3 §
488	Tapered copolymers of styrene and 4-vinylbenzocyclobutene via carbanionic polymerization for crosslinkable polymer films. <i>Journal of Polymer Science</i> , 2020 , 58, 181-192	2.4	2
487	Surface charges as a versatile platform for emerging applications. <i>Science Bulletin</i> , 2020 , 65, 1052-1054	10.6	9
486	Elastic Superhydrophobic and Photocatalytic Active Films Used as Blood Repellent Dressing. <i>Advanced Materials</i> , 2020 , 32, e1908008	24	57
485	Responsive Ionogel Surface with Renewable Antibiofouling Properties. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1900395	4.8	8
484	In Situ Monitoring of the Imbibition of Poly(n-butyl methacrylates) in Nanoporous Alumina by Dielectric Spectroscopy. <i>Macromolecules</i> , 2019 , 52, 8167-8176	5.5	8
483	Surface Premelting and Interfacial Interactions of Semi-Clathrate Hydrate. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 24080-24086	3.8	12
482	Control of Droplet Evaporation on Oil-Coated Surfaces for the Synthesis of Asymmetric Supraparticles. <i>Langmuir</i> , 2019 , 35, 14042-14048	4	16
481	Direct Observation of Gas Meniscus Formation on a Superhydrophobic Surface. ACS Nano, 2019 , 13, 224	16 -27 5	 2 8
480	Porous supraparticle assembly through self-lubricating evaporating colloidal ouzo drops. <i>Nature Communications</i> , 2019 , 10, 478	17.4	39

479	Preparation of Monodisperse Giant Unilamellar Anchored Vesicles Using Micropatterned Hydrogel Substrates. <i>ACS Omega</i> , 2019 , 4, 9393-9399	3.9	10
478	Surfactants Mediate the Dewetting of Acrylic Polymer Films Commonly Applied to Works of Art. <i>ACS Applied Materials & Description of Action 2019</i> , 11, 27288-27296	9.5	8
477	Removal of Surface Oxygen Vacancies Increases Conductance Through TiO Thin Films for Perovskite Solar Cells. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 13458-13466	3.8	37
476	Brillouin light scattering under one-dimensional confinement: Symmetry and interference self-canceling. <i>Physical Review B</i> , 2019 , 99,	3.3	6
475	Segregation in Drying Binary Colloidal Droplets. ACS Nano, 2019, 13, 4972-4979	16.7	55
474	Polyhedral Liquid Marbles. <i>Advanced Functional Materials</i> , 2019 , 29, 1808826	15.6	41
473	Flow-Induced Long-Term Stable Slippery Surfaces. <i>Advanced Science</i> , 2019 , 6, 1900019	13.6	17
472	Crystallization and Dynamics of Water Confined in Model Mesoporous Silica Particles: Two Ice Nuclei and Two Fractions of Water. <i>Langmuir</i> , 2019 , 35, 5890-5901	4	19
471	Shaping the Assembly of Superparamagnetic Nanoparticles. ACS Nano, 2019, 13, 3015-3022	16.7	38
470	Formation, Deformation, Rolling and Sliding of Particles and Particle Aggregates: Mechanisms and Applications 2019 , 89-114		
469	Optimizing Hydrophobicity and Photocatalytic Activity of PDMS-Coated Titanium Dioxide. <i>ACS Applied Materials & Dioxides amp; Interfaces</i> , 2019 , 11, 27422-27425	9.5	27
468	Light-Switchable Polymer Adhesive Based on Photoinduced Reversible Solid-to-Liquid Transitions. <i>ACS Macro Letters</i> , 2019 , 8, 968-972	6.6	65
467	Surface charge printing for programmed droplet transport. <i>Nature Materials</i> , 2019 , 18, 936-941	27	208
466	Effects of Spacers on Photoinduced Reversible Solid-to-Liquid Transitions of Azobenzene-Containing Polymers. <i>Chemistry - A European Journal</i> , 2019 , 25, 10946-10953	4.8	25
465	Two-Stage Collapse of PNIPAM Brushes: Viscoelastic Changes Revealed by an Interferometric Laser Technique. <i>Langmuir</i> , 2019 , 35, 15776-15783	4	0
464	Slide electrification: charging of surfaces by moving water drops. <i>Soft Matter</i> , 2019 , 15, 8667-8679	3.6	38
463	Forced dynamic dewetting of structured surfaces: Influence of surfactants. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	2
462	The role of surface forces in mineral flotation. <i>Current Opinion in Colloid and Interface Science</i> , 2019 , 44, 143-152	7.6	10

461	Tuning the Porosity of Supraparticles. ACS Nano, 2019, 13, 13949-13956	16.7	35
460	Bubbles nucleating on superhydrophobic micropillar arrays under flow. <i>Soft Matter</i> , 2019 , 15, 8175-818	3 3.6	5
459	Elastic wave propagation in smooth and wrinkled stratified polymer films. <i>Nanotechnology</i> , 2019 , 30, 045709	3.4	3
458	How to Coat the Inside of Narrow and Long Tubes with a Super-Liquid-Repellent Layer-A Promising Candidate for Antibacterial Catheters. <i>Advanced Materials</i> , 2019 , 31, e1801324	24	38
457	Effect of particle morphology on mechanical properties of liquid marbles. <i>Advanced Powder Technology</i> , 2019 , 30, 330-335	4.6	19
456	Hierarchical Structures for Superhydrophobic and Superoleophobic Surfaces. <i>Langmuir</i> , 2019 , 35, 10689	9-4070	356
455	Liquid-Repellent Metal Oxide Photocatalysts. <i>Chemistry - A European Journal</i> , 2019 , 25, 4535-4542	4.8	7
454	Ultrafast Processing of Hierarchical Nanotexture for a Transparent Superamphiphobic Coating with Extremely Low Roll-Off Angle and High Impalement Pressure. <i>Advanced Materials</i> , 2018 , 30, e1706529	24	74
453	Solvation Forces and Non-DLVO Forces in Water 2018 , 297-328		
452	Surface Forces in Polymer Solutions and Melts 2018 , 329-362		
451	Electrostatic Double-Layer Forces 2018 , 99-129		1
450	Capillary Forces 2018 , 131-166		
449	Hydrodynamic Forces 2018 , 167-190		
448	Interfacial Forces between Fluid Interfaces and across Thin Films 2018 , 191-217		
447	Contact Mechanics and Adhesion 2018 , 219-250		
446	Theory on Capillary Filling of Polymer Melts in Nanopores. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1800087	4.8	22
445	Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12626-12648	16.4	30
444	Engineering von Proteinen an Oberflühen: Von komplementüer Charakterisierung zu Materialoberflühen mit maßeschneiderten Funktionen. <i>Angewandte Chemie</i> , 2018 , 130, 12806-12830	3.6	3

443	Capillary Imbibition of Polymer Mixtures in Nanopores. <i>Macromolecules</i> , 2018 , 51, 3059-3065	5.5	16
442	The application of atomic force microscopy in mineral flotation. <i>Advances in Colloid and Interface Science</i> , 2018 , 256, 373-392	14.3	72
441	Molecular Probe Diffusion in Thin Polymer Films: Evidence for a Layer with Enhanced Mobility Far above the Glass Temperature. <i>ACS Macro Letters</i> , 2018 , 7, 425-430	6.6	13
440	Orthogonal photo-switching of supramolecular patterned surfaces. <i>Chemical Communications</i> , 2018 , 54, 3403-3406	5.8	21
439	Nano-mechanical Behavior of Calcium Silicate Hydrate and Calcium Hydroxide in Cement Paste: Elevated Peak-Force Study. <i>International Journal of Civil Engineering</i> , 2018 , 16, 273-280	1.9	4
438	Detaching Microparticles from a Liquid Surface. <i>Physical Review Letters</i> , 2018 , 121, 048002	7.4	21
437	Redox-Responsive and Thermoresponsive Supramolecular Nanosheet Gels with High Young's Moduli. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1800282	4.8	7
436	Adaptive Wetting-Adaptation in Wetting. <i>Langmuir</i> , 2018 , 34, 11292-11304	4	33
435	Red-Light-Controlled Release of Drug R u Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Environments. <i>Advanced Functional Materials</i> , 2018 , 28, 1804227	15.6	56
434	Solvent-Dependent Light-Induced Structures in Gem-Dichlorocyclopropanated Polybutadiene Solutions. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 6995-7001	3.4	
434		3.4	6
	Solutions. Journal of Physical Chemistry B, 2018 , 122, 6995-7001	2.8	6
433	Solutions. Journal of Physical Chemistry B, 2018, 122, 6995-7001 Wetting over pre-existing liquid films. Physical Review Fluids, 2018, 3,	2.8	
433	Solutions. Journal of Physical Chemistry B, 2018, 122, 6995-7001 Wetting over pre-existing liquid films. Physical Review Fluids, 2018, 3, How drops start sliding over solid surfaces. Nature Physics, 2018, 14, 191-196 Adsorption and Crystallization of Particles at the Air-Water Interface Induced by Minute Amounts	2.8	145
433 432 431	Solutions. Journal of Physical Chemistry B, 2018, 122, 6995-7001 Wetting over pre-existing liquid films. Physical Review Fluids, 2018, 3, How drops start sliding over solid surfaces. Nature Physics, 2018, 14, 191-196 Adsorption and Crystallization of Particles at the Air-Water Interface Induced by Minute Amounts of Surfactant. Langmuir, 2018, 34, 15526-15536 Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation	2.8 16.2	145
433 432 431 430	Wetting over pre-existing liquid films. <i>Physical Review Fluids</i> , 2018 , 3, How drops start sliding over solid surfaces. <i>Nature Physics</i> , 2018 , 14, 191-196 Adsorption and Crystallization of Particles at the Air-Water Interface Induced by Minute Amounts of Surfactant. <i>Langmuir</i> , 2018 , 34, 15526-15536 Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. <i>Nature Communications</i> , 2018 , 9, 5306 Reconfiguring surface functions using visible-light-controlled metal-ligand coordination. <i>Nature</i>	2.8 16.2 4 17.4	145 18 32
433 432 431 430 429	Solutions. Journal of Physical Chemistry B, 2018, 122, 6995-7001 Wetting over pre-existing liquid films. Physical Review Fluids, 2018, 3, How drops start sliding over solid surfaces. Nature Physics, 2018, 14, 191-196 Adsorption and Crystallization of Particles at the Air-Water Interface Induced by Minute Amounts of Surfactant. Langmuir, 2018, 34, 15526-15536 Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nature Communications, 2018, 9, 5306 Reconfiguring surface functions using visible-light-controlled metal-ligand coordination. Nature Communications, 2018, 9, 3842	2.8 16.2 4 17.4	145 18 32 40

425	Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface. <i>Soft Matter</i> , 2017 , 13, 2749-2759	3.6	33
424	Controlling the Structure of Supraballs by pH-Responsive Particle Assembly. <i>Langmuir</i> , 2017 , 33, 1995-2	2002	26
423	Stable Hydrophobic Metal-Oxide Photocatalysts via Grafting Polydimethylsiloxane Brush. <i>Advanced Materials</i> , 2017 , 29, 1604637	24	108
422	Near-infrared photochemistry at interfaces based on upconverting nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 23585-23596	3.6	29
421	Shape of a sessile drop on a flat surface covered with a liquid film. <i>Soft Matter</i> , 2017 , 13, 3760-3767	3.6	28
420	A Photocatalytically Active Lubricant-Impregnated Surface. <i>Angewandte Chemie</i> , 2017 , 129, 5047-5051	3.6	3
419	Energy Dissipation of Moving Drops on Superhydrophobic and Superoleophobic Surfaces. <i>Langmuir</i> , 2017 , 33, 107-116	4	43
418	An Amphiphilic Ruthenium Polymetallodrug for Combined Photodynamic Therapy and Photochemotherapy In Vivo. <i>Advanced Materials</i> , 2017 , 29, 1603702	24	161
417	Enhancing CO Capture using Robust Superomniphobic Membranes. <i>Advanced Materials</i> , 2017 , 29, 1603.	5 2 4	50
416	Kinetics of Light-Induced Concentration Patterns in Transparent Polymer Solutions. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 7180-7189	3.4	2
415	Recent experimental advances for understanding bubble-particle attachment in flotation. <i>Advances in Colloid and Interface Science</i> , 2017 , 246, 105-132	14.3	136
414	Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina. Journal of Chemical Physics, 2017, 146, 203320	3.9	21
413	A Photocatalytically Active Lubricant-Impregnated Surface. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4965-4969	16.4	52
412	A Photoresponsive Orthogonal Supramolecular Complex Based on Host-Guest Interactions. <i>Chemistry - A European Journal</i> , 2017 , 23, 2628-2634	4.8	34
411	Homogeneous Nucleation of Ice Confined in Hollow Silica Spheres. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 306-313	3.4	12
410	Capillary Imbibition, Crystallization, and Local Dynamics of Hyperbranched Poly(ethylene oxide) Confined to Nanoporous Alumina. <i>Macromolecules</i> , 2017 , 50, 8755-8764	5.5	14
409	Spontaneous jumping, bouncing and trampolining of hydrogel drops on a heated plate. <i>Nature Communications</i> , 2017 , 8, 905	17.4	27
408	Effects of pH on the structure and mechanical properties of dried pH-responsive latex particles. <i>Soft Matter</i> , 2017 , 13, 7562-7570	3.6	12

407	Transfer of Materials from Water to Solid Surfaces Using Liquid Marbles. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 33351-33359	9.5	50
406	Biological fabrication of cellulose fibers with tailored properties. <i>Science</i> , 2017 , 357, 1118-1122	33.3	23
405	Modulation of Mitochondriotropic Properties of Cyanine Dyes by in Organello Copper-Free Click Reaction. <i>ChemBioChem</i> , 2017 , 18, 1814-1818	3.8	5
404	Initial stage sintering of polymer particles Experiments and modelling of size-, temperature- and time-dependent contacts. <i>EPJ Web of Conferences</i> , 2017 , 140, 13012	0.3	2
403	Forced dewetting dynamics of high molecular weight surfactant solutions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 521, 30-37	5.1	6
402	Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. <i>Nature Chemistry</i> , 2017 , 9, 145-151	17.6	323
401	Forces between a stiff and a soft surface. Current Opinion in Colloid and Interface Science, 2017, 27, 82-9	90 7.6	19
400	Thermal Characterization of Dynamic Silicon Cantilever Array Sensors by Digital Holographic Microscopy. <i>Sensors</i> , 2017 , 17,	3.8	5
399	From elasticity to capillarity in soft materials indentation. Physical Review Materials, 2017, 1,	3.2	34
398	Pressure-sensitive adhesive powder. <i>Materials Horizons</i> , 2016 , 3, 47-52	14.4	63
397	Influence of surfactants in forced dynamic dewetting. Soft Matter, 2016, 12, 7782-7791	3.6	27
396	3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces. <i>Scientific Reports</i> , 2016 , 6, 23687	4.9	45
395	Long-Term Repellency of Liquids by Superoleophobic Surfaces. <i>Physical Review Letters</i> , 2016 , 117, 046	10,24	16
394	Surface forces between colloidal particles at high hydrostatic pressure. <i>Physical Review E</i> , 2016 , 93, 027	2608	6
393	Local Flow Field and Slip Length of Superhydrophobic Surfaces. <i>Physical Review Letters</i> , 2016 , 116, 134	5 9 14	67
392	Effect of water and nano-silica solution on the early stages cement hydration. <i>Construction and Building Materials</i> , 2016 , 129, 11-24	6.7	19
391	An autonomic self-healing organogel with a photo-mediated modulus. <i>Chemical Communications</i> , 2016 , 52, 14157-14160	5.8	26

389	Warum der Tropfen nicht hlt. Nachrichten Aus Der Chemie, 2016 , 64, 945-951	0.1	
388	Ruthenium-Containing Block Copolymer Assemblies: Red-Light-Responsive Metallopolymers with Tunable Nanostructures for Enhanced Cellular Uptake and Anticancer Phototherapy. <i>Advanced Healthcare Materials</i> , 2016 , 5, 467-73	10.1	64
387	Near-Infrared-Sensitive Materials Based on Upconverting Nanoparticles. <i>Advanced Materials</i> , 2016 , 28, 1208-26	24	286
386	Stability of a Split Streptomycin Binding Aptamer. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 6479-89	3.4	9
385	Temperature-Controlled Diffusion in PNIPAM-Modified Silica Inverse Opals. <i>ACS Macro Letters</i> , 2016 , 5, 190-194	6.6	15
384	Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 5724-5731	3.8	118
383	How Water Advances on Superhydrophobic Surfaces. <i>Physical Review Letters</i> , 2016 , 116, 096101	7.4	168
382	Porous titania/carbon hybrid microspheres templated by in situ formed polystyrene colloids. Journal of Colloid and Interface Science, 2016 , 469, 242-256	9.3	4
381	Humidity-Induced Grain Boundaries in MAPbI3 Perovskite Films. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 6363-6368	3.8	83
380	Dip-Pen Nanolithography 2016 , 781-788		
379	Core@shell Poly(n-butylacrylate)@polystyrene Nanoparticles: Baroplastic Force-Responsiveness in Presence of Strong Phase Separation. <i>Macromolecular Rapid Communications</i> , 2016 , 37, 584-9	4.8	13
378	Light-Driven Delivery and Release of Materials Using Liquid Marbles. <i>Advanced Functional Materials</i> , 2016 , 26, 3199-3206	15.6	138
377	Liquid Marbles: Light-Driven Delivery and Release of Materials Using Liquid Marbles (Adv. Funct. Mater. 19/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 3372-3372	15.6	5
376	Mechanical Properties of Highly Porous Super Liquid-Repellent Surfaces. <i>Advanced Functional Materials</i> , 2016 , 26, 4914-4922	15.6	31
375	The Cassie-Wenzel transition of fluids on nanostructured substrates: Macroscopic force balance versus microscopic density-functional theory. <i>Journal of Chemical Physics</i> , 2016 , 145, 134703	3.9	9
374	Small Structures, Big Droplets: The Role of Nanoscience in Fog Harvesting. ACS Nano, 2016, 10, 10627-	10:63;0	26
373	Candle soot-based super-amphiphobic coatings resist protein adsorption. <i>Biointerphases</i> , 2016 , 11, 031	0 0 .8	16
372	Influence of Temperature on the Nanoadhesion of a Methyl-Terminated Thiol Monolayer: A New Insight with High-Rate Dynamic Force Spectroscopy. <i>Langmuir</i> , 2016 , 32, 4500-8	4	8

371	Polarization dependence of plasmonic near-field enhanced photoemission from cross antennas. <i>Applied Physics B: Lasers and Optics</i> , 2016 , 122, 1	1.9	5
370	Interfacial Energy and Glass Temperature of Polymers Confined to Nanoporous Alumina. <i>Macromolecules</i> , 2016 , 49, 7400-7414	5.5	74
369	Effect of Poly(ethylene oxide) Architecture on the Bulk and Confined Crystallization within Nanoporous Alumina. <i>Macromolecules</i> , 2016 , 49, 5945-5954	5.5	24
368	Effects of polydispersity, additives, impurities and surfaces on the crystallization of poly(ethylene oxide)(PEO) confined to nanoporous alumina. <i>Polymer</i> , 2016 , 99, 273-280	3.9	25
367	Reversible Janus particle assembly via responsive host-guest interactions. <i>Chemical Communications</i> , 2015 , 51, 2725-7	5.8	57
366	The forces and physical properties of polymer particulate monolayers at air/aqueous interfaces. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 470, 322-332	5.1	7
365	Photon upconversion lithography: patterning of biomaterials using near-infrared light. <i>Advanced Materials</i> , 2015 , 27, 2203-6	24	104
364	Ultrastrong composites from dopamine modified-polymer-infiltrated colloidal crystals. <i>Materials Horizons</i> , 2015 , 2, 434-441	14.4	6
363	Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions. <i>Langmuir</i> , 2015 , 31, 7317-27	4	64
362	Solvothermal synthesis of hierarchical Eu2O3 nanostructures templated by PS-b-PMAA: morphology control via simple variation of water contents. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5789-5793	13	6
361	Soft NanocompositesFrom Interface Control to Interphase Formation. <i>ACS Applied Materials & Acs Applied Materials & Acs Applied Materials</i>	9.5	6
360	Elucidating the impact of molecular packing and device architecture on the performance of nanostructured perylene diimide solar cells. <i>ACS Applied Materials & Description</i> , 7, 8687-98	9.5	17
359	Phoxonic Hybrid Superlattice. ACS Applied Materials & Therefore, 2015, 7, 12488-95	9.5	13
358	Dynamics of Ice/Water Confined in Nanoporous Alumina. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 148	3 <u>34</u> 20	23
357	Materials science: Droplets leap into action. <i>Nature</i> , 2015 , 527, 41-2	50.4	4
356	Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 24876-86	9.5	25
355	High-performance TiO2 nanoparticle/DOPA-polymer composites. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 1129-37	4.8	12
354	Supramolecular hydrogels constructed by red-light-responsive host-guest interactions for photo-controlled protein release in deep tissue. <i>Soft Matter</i> , 2015 , 11, 7656-62	3.6	136

(2014-2015)

353	Fluorescence Correlation Spectroscopy Monitors the Hydrophobic Collapse of pH-Responsive Hairy Nanoparticles at the Individual Particle Level. <i>Macromolecules</i> , 2015 , 48, 7237-7244	5.5	8
352	Kinetics of Ice Nucleation Confined in Nanoporous Alumina. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 11960-6	3.4	17
351	Direct observation of drops on slippery lubricant-infused surfaces. <i>Soft Matter</i> , 2015 , 11, 7617-26	3.6	246
350	Functional superhydrophobic surfaces made of Janus micropillars. <i>Soft Matter</i> , 2015 , 11, 506-15	3.6	22
349	Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. <i>Chemical Communications</i> , 2015 , 51, 431-4	5.8	146
348	Wet Adhesion: Torrent Frog-Inspired Adhesives: Attachment to Flooded Surfaces (Adv. Funct. Mater. 10/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 1498-1498	15.6	1
347	Siliceous spicules enhance fracture-resistance and stiffness of pre-colonial Amazonian ceramics. <i>Scientific Reports</i> , 2015 , 5, 13303	4.9	14
346	Upconverting-nanoparticle-assisted photochemistry induced by low-intensity near-infrared light: how low can we go?. <i>Chemistry - A European Journal</i> , 2015 , 21, 9165-70	4.8	66
345	Synthesis of Mesoporous Supraparticles on Superamphiphobic Surfaces. <i>Advanced Materials</i> , 2015 , 27, 7338-43	24	70
344	Molecular Tracer Diffusion in Nondilute Polymer Solutions: Universal Master Curve and Glass Transition Effects. <i>Macromolecules</i> , 2015 , 48, 8907-8912	5.5	8
343	Homogeneous nucleation of predominantly cubic ice confined in nanoporous alumina. <i>Nano Letters</i> , 2015 , 15, 1987-92	11.5	50
342	Fluorescence Correlation Spectroscopy in Dilute Polymer Solutions: Effects of Molar Mass Dispersity and the Type of Fluorescent Labeling. <i>ACS Macro Letters</i> , 2015 , 4, 171-176	6.6	10
341	Torrent Frog-Inspired Adhesives: Attachment to Flooded Surfaces. <i>Advanced Functional Materials</i> , 2015 , 25, 1499-1505	15.6	81
340	Super liquid-repellent layers: The smaller the better. <i>Advances in Colloid and Interface Science</i> , 2015 , 222, 104-9	14.3	39
339	Superamphiphobic particles: how small can we go?. <i>Physical Review Letters</i> , 2014 , 112, 016101	7.4	23
338	Measuring contact angle and meniscus shape with a reflected laser beam. <i>Review of Scientific Instruments</i> , 2014 , 85, 013703	1.7	4
337	Characterization of super liquid-repellent surfaces. <i>Current Opinion in Colloid and Interface Science</i> , 2014 , 19, 343-354	7.6	117
336	Ion Size Approaching the Bjerrum Length in Solvents of Low Polarity by Dendritic Encapsulation. <i>Macromolecules</i> , 2014 , 47, 191-196	5.5	23

335	Yttrium-substituted nanocrystalline TiOlphotoanodes for perovskite based heterojunction solar cells. <i>Nanoscale</i> , 2014 , 6, 1508-14	7.7	151
334	Optimization of superamphiphobic layers based on candle soot. <i>Pure and Applied Chemistry</i> , 2014 , 86, 87-96	2.1	21
333	Adsorption, aggregation, and desorption of proteins on smectite particles. <i>Langmuir</i> , 2014 , 30, 11650-9	4	10
332	Interphase of a Polymer at a Solid Interface. <i>Macromolecules</i> , 2014 , 47, 8459-8465	5.5	19
331	Nanopatterns of polymer brushes for understanding protein adsorption on the nanoscale. <i>RSC Advances</i> , 2014 , 4, 45059-45064	3.7	28
330	Molecular Exchange Kinetics of Diblock Copolymer Micelles Monitored by Fluorescence Correlation Spectroscopy <i>ACS Macro Letters</i> , 2014 , 3, 428-432	6.6	20
329	Suppression of Poly(ethylene oxide) Crystallization in Diblock Copolymers of Poly(ethylene oxide)-b-poly(Eaprolactone) Confined to Nanoporous Alumina. <i>Macromolecules</i> , 2014 , 47, 1793-1800	5.5	60
328	Poly(ethylene glycol)-Functionalized Hexaphenylbenzenes as Unique Amphiphiles: Supramolecular Organization and Ion Conductivity. <i>Macromolecules</i> , 2014 , 47, 5691-5702	5.5	6
327	Electrochemically durable thiophene alkanethiol self-assembled monolayers. <i>Langmuir</i> , 2014 , 30, 1536-	43	4
326	Bioinspired orientation-dependent friction. <i>Langmuir</i> , 2014 , 30, 11175-82	4	33
325	Hydrodynamic force between a sphere and a soft, elastic surface. <i>Langmuir</i> , 2014 , 30, 11619-24	4	22
324	Dynamics in Stimuli-Responsive Poly(N-isopropylacrylamide) Hydrogel Layers As Revealed by Fluorescence Correlation Spectroscopy. <i>Macromolecules</i> , 2014 , 47, 5303-5312	5.5	24
323	Switchable dielectric permittivity with temperature and Dc-bias in a semifluorinated azobenzene derivative. <i>Colloid and Polymer Science</i> , 2014 , 292, 1939-1948	2.4	7
322	Diffusion of isolated surface-active molecules at the air/water interface. <i>Colloid and Polymer Science</i> , 2014 , 292, 1817-1823	2.4	3
321	Floating on oil. <i>Langmuir</i> , 2014 , 30, 10637-42	4	12
320	X-ray photoemission spectroscopy study of vertical phase separation in F8BT:PDI/ITO films for photovoltaic applications 2014 ,		1
319	Macromol. Rapid Commun. 23/2014. Macromolecular Rapid Communications, 2014, 35, 2044-2044	4.8	
318	A study of photothermal laser ablation of various polymers on microsecond time scales. <i>SpringerPlus</i> , 2014 , 3, 489		26

317	Wenn selbst 🛘 abperlt. <i>Physik in Unserer Zeit</i> , 2014 , 45, 228-233	0.1	
316	Hierarchical self-assembly of PDMA-b-PS chains into granular nanoparticles: genesis and fate. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 1994-9	4.8	8
315	Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 111, 439-45	6	4
314	Surface-mediated buckling of corellhell spheres for the formation of oriented anisotropic particles with tunable morphologies. <i>Soft Matter</i> , 2013 , 9, 2589	3.6	8
313	Influence of surfactant transport suppression on dynamic contact angle hysteresis. <i>Colloid and Polymer Science</i> , 2013 , 291, 361-366	2.4	9
312	Nanoadhesion on rigid methyl-terminated biphenyl thiol monolayers: a high-rate dynamic force spectroscopy study. <i>ChemPhysChem</i> , 2013 , 14, 543-9	3.2	4
311	Complex tracer diffusion dynamics in polymer solutions. <i>Physical Review Letters</i> , 2013 , 111, 088301	7.4	48
310	Effect of Morphological Changes on Presence of Trap States in P3HT:PCBM Solar Cells Studied by Cross-Sectional Energy Filtered TEM and Thermally Stimulated Current Measurements. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 23495-23499	3.8	12
309	Translational and rotational diffusion of gold nanorods near a wall. <i>Journal of Chemical Physics</i> , 2013 , 139, 064710	3.9	10
308	Measuring adhesion forces in powder collectives by inertial detachment. <i>Langmuir</i> , 2013 , 29, 16075-83	4	17
308	Measuring adhesion forces in powder collectives by inertial detachment. <i>Langmuir</i> , 2013 , 29, 16075-83 Effect of local and global structural order on the performance of perylene diimide excimeric solar cells. <i>ACS Applied Materials & Description</i> , 11844-57	9.5	17 69
	Effect of local and global structural order on the performance of perylene diimide excimeric solar	<i>'</i>	
307	Effect of local and global structural order on the performance of perylene diimide excimeric solar cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 11844-57 Colloids in external electric and magnetic fields: Colloidal crystals, pinning, chain formation, and	9.5	69
3 ⁰ 7	Effect of local and global structural order on the performance of perylene diimide excimeric solar cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 11844-57 Colloids in external electric and magnetic fields: Colloidal crystals, pinning, chain formation, and electrokinetics. European Physical Journal: Special Topics, 2013, 222, 2881-2893 Optical and redox properties of phenyl-capped cyclohexa[c]-oligothiophenes. Synthetic Metals,	9.5	69 5
307 306 305	Effect of local and global structural order on the performance of perylene diimide excimeric solar cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 11844-57 Colloids in external electric and magnetic fields: Colloidal crystals, pinning, chain formation, and electrokinetics. European Physical Journal: Special Topics, 2013, 222, 2881-2893 Optical and redox properties of phenyl-capped cyclohexa[c]-oligothiophenes. Synthetic Metals, 2013, 181, 1-9 Dynamic Heterogeneity and Phase Separation Kinetics in Miscible Poly(vinyl acetate)/Poly(ethylene	9.5 2.3 3.6	6952
307 306 305 304	Effect of local and global structural order on the performance of perylene diimide excimeric solar cells. <i>ACS Applied Materials & Diese Materials & M</i>	9.5 2.3 3.6	69529
307 306 305 304 303	Effect of local and global structural order on the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of perylene diimide excimeric solar cells. ACS Applied Materials & Description of the performance of the	9.5 2.3 3.6 5.5	695297

299	Homogeneous crystallization and local dynamics of poly(ethylene oxide) (PEO) confined to nanoporous alumina. <i>Soft Matter</i> , 2013 , 9, 2621	3.6	98
298	Glycidyl 4-Functionalized-1,2,3-Triazole Polymers. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 56-	61 .6	15
297	Particle formation in the emulsion-solvent evaporation process. Small, 2013, 9, 3514-22	11	60
296	Defect-controlled hypersound propagation in hybrid superlattices. <i>Physical Review Letters</i> , 2013 , 111, 164301	7.4	35
295	Design principles for superamphiphobic surfaces. <i>Soft Matter</i> , 2013 , 9, 418-428	3.6	176
294	Capillary forces between rigid spheres and elastic supports: the role of Young's modulus and equilibrium vapor adsorption. <i>Soft Matter</i> , 2013 , 9, 4534	3.6	14
293	Particle and tracer diffusion in complex liquids 2013,		1
292	Supramolecular thiophene nanosheets. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 4845-8	16.4	66
291	Plasmon-Enhanced Dynamic Depolarized Light Scattering. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 8411-8419	3.8	18
290	Drop impact on surfactant films and solutions. <i>Colloid and Polymer Science</i> , 2013 , 291, 1963-1976	2.4	11
289	Supramolecular Organogel Based on Crown Ether and Secondary Ammoniumion Functionalized Glycidyl Triazole Polymers. <i>Macromolecules</i> , 2013 , 46, 4617-4625	5.5	56
288	Liquid drops impacting superamphiphobic coatings. <i>Langmuir</i> , 2013 , 29, 7847-56	4	89
287	Nanoscale thermomechanics of wear-resilient polymeric bilayer systems. ACS Nano, 2013, 7, 748-59	16.7	11
286	Self-assembly beyond semifluorinated alkanes in a semifluorinated benzene derivative. <i>Soft Matter</i> , 2013 , 9, 11334	3.6	5
285	Measurement of rotation of individual spherical particles in cohesive granulates. <i>Granular Matter</i> , 2013 , 15, 391-400	2.6	19
284	Hydrodynamic boundary condition of water on hydrophobic surfaces. <i>Physical Review E</i> , 2013 , 87, 05100	0 1 .4	24
283	How superhydrophobicity breaks down. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 3254-8	11.5	322
282	Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures. <i>Advances in Polymer Science</i> , 2013 , 115-210	1.3	5

(2012-2013)

281	Flexible minerals: self-assembled calcite spicules with extreme bending strength. <i>Science</i> , 2013 , 339, 1298-302	33.3	108
280	Fluorescence correlation spectroscopy of repulsive systems: theory, simulation, and experiment. <i>Journal of Chemical Physics</i> , 2013 , 138, 214902	3.9	5
279	Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy. <i>Physical Review E</i> , 2013 , 87, 012403	2.4	12
278	Insights into the Adhesive Mechanisms of Tree Frogs using Artificial Mimics. <i>Advanced Functional Materials</i> , 2013 , 23, 1137-1146	15.6	113
277	Solvent-free synthesis of microparticles on superamphiphobic surfaces. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11286-9	16.4	35
276	Solvent-Free Synthesis of Microparticles on Superamphiphobic Surfaces. <i>Angewandte Chemie</i> , 2013 , 125, 11496-11499	3.6	7
275	Biomimetics: Insights into the Adhesive Mechanisms of Tree Frogs using Artificial Mimics (Adv. Funct. Mater. 9/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 1094-1094	15.6	1
274	Tracer Mobility in Aqueous Poly(N-isopropylacrylamide) Grafted Networks: Effect of Interactions and Permanent Crosslinks 2013 , 53-62		2
273	Scanning force microscopy as a tool to investigate the properties of polyglycerol ester foams. Journal of Colloid and Interface Science, 2012, 374, 164-75	9.3	12
272	Exfoliation of montmorillonite in protein solutions. <i>Journal of Colloid and Interface Science</i> , 2012 , 374, 135-40	9.3	12
271	Direct 3D visualization of the phase-separated morphology in chlorinated polyethylene/nylon terpolyamide based thermoplastic elastomers. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 114-9	4.8	13
270	Temperature analysis of laser heated polymers on microsecond time scales. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 106, 791-801	2.6	6
269	Time-dependent Dynamic Receding Contact Angles Studied during the Flow of Dilute Aqueous Surfactant Solutions through Fluorinated Microtubes. <i>Chemistry Letters</i> , 2012 , 41, 1232-1234	1.7	3
268	Pinning-induced Variations of the Contact Angle of Drops on Microstructured Surfaces. <i>Chemistry Letters</i> , 2012 , 41, 1343-1345	1.7	5
267	Dynamic measurement of the force required to move a liquid drop on a solid surface. <i>Langmuir</i> , 2012 , 28, 16812-20	4	87
266	Thermal properties of nanocapsules measured by scanning force microscopy methods. <i>Microelectronic Engineering</i> , 2012 , 97, 223-226	2.5	1
265	Arrays of aligned supramolecular wires by macroscopic orientation of columnar discotic mesophases. <i>ACS Nano</i> , 2012 , 6, 9359-65	16.7	48
264	Electrokinetics on superhydrophobic surfaces. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 464110	1.8	19

263	Frequency Response of Polymer Films Made from a Precursor Colloidal Monolayer on a Nanomechanical Cantilever. <i>Macromolecules</i> , 2012 , 45, 862-871	5.5	10
262	Adhesion of particles with sharp edges to air-liquid interfaces. <i>Langmuir</i> , 2012 , 28, 11042-7	4	28
261	Dynamics and kinetics of structure formation in molecularly tethered fluorocarbon/hydrocarbon amphiphiles. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 13812-20	3.4	7
260	Effect of the degree of dissociation of molecules in a monolayer at an air/water interface on the force between the monolayer and a like-charged particle in the subphase. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 13731-8	3.4	8
259	Candle soot as a template for a transparent robust superamphiphobic coating. <i>Science</i> , 2012 , 335, 67-7	033.3	1507
258	Stimuli-responsive y-shaped polymer brushes based on junction-point-reactive block copolymers. <i>Advanced Materials</i> , 2012 , 24, 5559-63	24	34
257	Soft Janus colloidal crystal film. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9809-13	16.4	44
256	Electrical Characterization of Solar Cell Materials Using Scanning Probe Microscopy. <i>Nanoscience and Technology</i> , 2012 , 551-573	0.6	3
255	Conformational Transitions of Poly(l-proline) in Copolypeptides with Poly(Ebenzyl-l-glutamate) Induced by Packing. <i>Macromolecules</i> , 2012 , 45, 9326-9332	5.5	20
254	Fluorescence correlation spectroscopy in colloid and interface science. <i>Current Opinion in Colloid and Interface Science</i> , 2012 , 17, 377-387	7.6	119
253	Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation. <i>Nano Letters</i> , 2012 , 12, 6012-7	11.5	43
252	Near field guided chemical nanopatterning. <i>Langmuir</i> , 2012 , 28, 3699-703	4	27
251	Engineering the hypersonic phononic band gap of hybrid Bragg stacks. <i>Nano Letters</i> , 2012 , 12, 3101-8	11.5	56
250	Versatile light actuated matter manipulation in transparent non-dilute polymer solutions. <i>Soft Matter</i> , 2012 , 8, 2382	3.6	7
249	Kelvin probe force microscopy in nonpolar liquids. <i>Langmuir</i> , 2012 , 28, 13892-9	4	32
248	Wetting on the microscale: shape of a liquid drop on a microstructured surface at different length scales. <i>Langmuir</i> , 2012 , 28, 8392-8	4	63
247	Dynamic Homogeneity by Architectural Design (Bottlebrush Polymers. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1311-1320	2.6	25
246	Monitoring the dynamics of phase separation in a polymer blend by confocal imaging and fluorescence correlation spectroscopy. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1568-73	4.8	17

(2011-2012)

245	Wetting on the microscale: shape of a liquid drop on a microstructured surface at different length scales. <i>Langmuir</i> , 2012 , 28, 10136-9	4	3
244	Self-induced transparency in diblock copolymer dispersions. <i>Optics Letters</i> , 2012 , 37, 2487-9	3	2
243	Fuerzas de repulsili de aditivos superplastificantes en sistemas de escoria granulada de horno alto en medios alcalinos, desde medidas de AFM a propiedades reol\(\beta\)icas. <i>Materiales De Construccion</i> , 2012 , 62, 489-513	1.8	25
242	Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: quantitative data analysis. <i>Physical Review E</i> , 2011 , 84, 066306	2.4	11
241	Suppression of phase transitions in a confined rodlike liquid crystal. ACS Nano, 2011, 5, 9208-15	16.7	78
240	Photoinduced Degradation Studies of Organic Solar Cell Materials Using Kelvin Probe Force and Conductive Scanning Force Microscopy. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19994-20001	3.8	30
239	Redox active polymers with phenothiazine moieties for nanoscale patterningvia conductive scanning force microscopy. <i>Nanoscale</i> , 2011 , 3, 5049	7.7	7
238	Dissociation and charge transport in salts of dendronized ions in solvents of low polarity. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 5801-6	3.4	18
237	Electric-field-induced condensation: an extension of the Kelvin equation. <i>Physical Review E</i> , 2011 , 83, 061604	2.4	21
236	Confined diffusion in periodic porous nanostructures. ACS Nano, 2011 , 5, 4607-16	16.7	74
236	Confined diffusion in periodic porous nanostructures. <i>ACS Nano</i> , 2011 , 5, 4607-16 Visible mie scattering in nonabsorbing hollow sphere powders. <i>Nano Letters</i> , 2011 , 11, 1389-94	16.7	74 81
		, ,	81
235	Visible mie scattering in nonabsorbing hollow sphere powders. <i>Nano Letters</i> , 2011 , 11, 1389-94 From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to	11.5	81
235	Visible mie scattering in nonabsorbing hollow sphere powders. <i>Nano Letters</i> , 2011 , 11, 1389-94 From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. <i>Nano Letters</i> , 2011 , 11, 1671-5 Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the	11.5	81
235 234 233	Visible mie scattering in nonabsorbing hollow sphere powders. <i>Nano Letters</i> , 2011 , 11, 1389-94 From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. <i>Nano Letters</i> , 2011 , 11, 1671-5 Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. <i>Nano Letters</i> , 2011 , 11, 2157-63	11.5 11.5	81 165 171
235 234 233 232	Visible mie scattering in nonabsorbing hollow sphere powders. <i>Nano Letters</i> , 2011 , 11, 1389-94 From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. <i>Nano Letters</i> , 2011 , 11, 1671-5 Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. <i>Nano Letters</i> , 2011 , 11, 2157-63 On the Adhesion between Individual Particles. <i>KONA Powder and Particle Journal</i> , 2011 , 29, 53-66 Water diffusion in polymer nano-films measured with microcantilevers. <i>Sensors and Actuators B:</i>	11.5 11.5 11.5	81 165 171 7
235 234 233 232 231	Visible mie scattering in nonabsorbing hollow sphere powders. <i>Nano Letters</i> , 2011 , 11, 1389-94 From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. <i>Nano Letters</i> , 2011 , 11, 1671-5 Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. <i>Nano Letters</i> , 2011 , 11, 2157-63 On the Adhesion between Individual Particles. <i>KONA Powder and Particle Journal</i> , 2011 , 29, 53-66 Water diffusion in polymer nano-films measured with microcantilevers. <i>Sensors and Actuators B: Chemical</i> , 2011 , 160, 32-38	11.5 11.5 11.5 3.4 8.5	81 165 171 7

227	A straightforward way to form close-packed TiO2 particle monolayers at an air/water interface. <i>Langmuir</i> , 2011 , 27, 887-94	4	25
226	Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances. <i>Nanoscale</i> , 2011 , 3, 4788-97	7.7	38
225	Fast dynamic wetting of polymer surfaces by miscible and immiscible liquids. <i>Colloid and Polymer Science</i> , 2011 , 289, 1609-1615	2.4	19
224	Influence of relative humidity on the nanoscopic topography and dielectric constant of thin films of PPy:PSS. <i>Small</i> , 2011 , 7, 950-6	11	9
223	Probing diffusion of single nanoparticles at water-oil interfaces. Small, 2011, 7, 3502-7	11	35
222	Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. <i>Advanced Materials</i> , 2011 , 23, 2962-5	24	410
221	Probing mobility and structural inhomogeneities in grafted hydrogel films by fluorescence correlation spectroscopy. <i>Soft Matter</i> , 2011 , 7, 7042	3.6	47
220	To tilt or not to tilt? Kinetics of structure formation in a discotic liquid crystal. Soft Matter, 2011, 7, 4680	0 3.6	16
219	Forces between a monolayer at an air/water interface and a particle in solution: influence of the sign of the surface charges and the subphase salt concentration. <i>Soft Matter</i> , 2011 , 7, 10182	3.6	13
218	Probing dynamics near surfaces: waveguide enhanced dynamic light scattering. <i>Soft Matter</i> , 2011 , 7, 1501-1505	3.6	4
217	Plasmon hybridization in stacked double crescents arrays fabricated by colloidal lithography. <i>Nano Letters</i> , 2011 , 11, 446-54	11.5	72
216	Influence of surfactant concentration and background salt on forced dynamic wetting and dewetting. <i>Langmuir</i> , 2011 , 27, 2112-7	4	23
215	Effect of the molecular structure on the hierarchical self-assembly of semifluorinated alkanes at the air/water interface. <i>Langmuir</i> , 2011 , 27, 8776-86	4	25
214	Dynamics of structure formation in a discotic liquid crystal by infrared spectroscopy and related techniques. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 14919-27	3.4	7
213	Effect of dipole functionalization on the thermodynamics and dynamics of discotic liquid crystals. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 5807-14	3.4	18
212	Materials science. Controlling the flow of suspensions. <i>Science</i> , 2011 , 331, 868-9	33.3	37
211	Measuring single small molecule binding via rupture forces of a split aptamer. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2025-7	16.4	65
210	Interaction between a silica particle and the underside of a polymer monolayer at the air/water interface in the presence of an anionic surfactant. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> 2011 383 32-40	5.1	8

(2010-2011)

209	Influence of humidity on the nanoadhesion between a hydrophobic and a hydrophilic surface. <i>Chemical Physics Letters</i> , 2011 , 503, 66-70	2.5	20
208	Resonance enhanced dynamic light scattering. Review of Scientific Instruments, 2011, 82, 015102	1.7	5
207	2010,		187
206	Experimental investigation of long time irradiation in polydiene solutions: reversibility and instabilities. <i>Journal of Optics (United Kingdom)</i> , 2010 , 12, 124013	1.7	6
205	Dynamics of condensation and evaporation: Effect of inter-drop spacing. <i>Europhysics Letters</i> , 2010 , 89, 36004	1.6	36
204	Time-resolved, local temperature measurements during pulsed laser heating. <i>New Journal of Physics</i> , 2010 , 12, 083011	2.9	10
203	Electrical scanning probe microscopy of an integrated blocking layer. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 6840-4	1.3	3
202	Interaction of a microsphere with a solid-supported liquid film. <i>Langmuir</i> , 2010 , 26, 11797-803	4	32
201	Capillary forces between soft, elastic spheres. <i>Soft Matter</i> , 2010 , 6, 5930	3.6	52
200	Interfacial forces between a silica particle and phosphatidylcholine monolayers at the air-water interface. <i>Langmuir</i> , 2010 , 26, 14574-81	4	23
199	Effects of Nanoscale Confinement and Pressure on the Dynamics of pODMA-b-ptBA-b-pODMA Triblock Copolymers. <i>Macromolecules</i> , 2010 , 43, 2453-2462	5.5	20
198	Near-Field-Mediated Enhancement of Two-Photon-Induced Fluorescence on Plasmonic Nanostructures. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 20968-20973	3.8	9
197	Detachment force of particles from air-liquid interfaces of films and bubbles. <i>Langmuir</i> , 2010 , 26, 1813	5- 4 3	40
196	Quantitative Analysis of the Interaction between an Atomic Force Microscopy Tip and a Hydrophobic Monolayer. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21572-21578	3.8	14
195	Anisotropic hindered motion close to an interface studied by resonance-enhanced dynamic light scattering. <i>New Journal of Physics</i> , 2010 , 12, 103022	2.9	9
194	The softer the better: fast condensation on soft surfaces. <i>Langmuir</i> , 2010 , 26, 1544-7	4	91
193	Effect of humidity on nanoscale adhesion on self-assembled thiol monolayers studied by dynamic force spectroscopy. <i>Langmuir</i> , 2010 , 26, 1837-47	4	18
192	Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation. <i>Optics Express</i> , 2010 , 18, 16539-45	3.3	144

191	Superhydrophobic surfaces by hybrid raspberry-like particles. <i>Faraday Discussions</i> , 2010 , 146, 35-48; discussion 79-101, 395-401	3.6	87
190	Dynamic wetting of polyisoprene melts: influence of the end group. <i>Langmuir</i> , 2010 , 26, 2544-9	4	7
189	Light induced charging of polymer functionalized nanorods. <i>Nano Letters</i> , 2010 , 10, 2812-6	11.5	28
188	Tracer diffusion in silica inverse opals. <i>Langmuir</i> , 2010 , 26, 10141-6	4	35
187	Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1654		197
186	Diffusion of water into SU-8 microcantilevers. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 10577-83	3.6	20
185	Electrical field assisted growth of poly(3-hexylthiophene) layers employing ionic liquids: microstructure elucidated by scanning force and electron microscopy. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5325		10
184	Tuning the mechanical properties of silica microcapsules. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 15392-8	3.6	44
183	One-dimensional hypersonic phononic crystals. <i>Nano Letters</i> , 2010 , 10, 980-4	11.5	73
182	Studying mechanical microcontacts of fine particles with the quartz crystal microbalance. <i>Powder Technology</i> , 2010 , 203, 489-502	5.2	26
181	Hydrodynamic drainage force in a highly confined geometry: role of surface roughness on different length scales. <i>Microfluidics and Nanofluidics</i> , 2010 , 8, 653-663	2.8	39
180	Efficient platinum-free counter electrodes for dye-sensitized solar cell applications. <i>ChemPhysChem</i> , 2010 , 11, 2814-9	3.2	118
179	Negative thermal expansion in discotic liquid crystals of nanographenes. <i>Advanced Materials</i> , 2010 , 22, 1403-6	24	41
178	Influence of the spring constant of cantilevers on hydrodynamic force measurements by the colloidal probe technique. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 354, 72-80	5.1	22
177	Slow kinetics of phase transformation in a dipole-functionalized discotic liquid crystal. <i>Journal of Chemical Physics</i> , 2009 , 131, 114704	3.9	7
176	Construction of Redispersible Polypyrrole CoreBhell Nanoparticles for Application in Polymer Electronics. <i>Advanced Materials</i> , 2009 , 21, 1137-1141	24	55
175	Characterization of quantum dot/conducting polymer hybrid films and their application to light-emitting diodes. <i>Advanced Materials</i> , 2009 , 21, 5022-5026	24	79
174	Facile Synthesis of Spherical Polyelectrolyte Brushes as Carriers for Conducting Polymers to be Used in Plastic Electronics. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 1504-1509	2.6	12

173	Electrical modes in scanning probe microscopy. Macromolecular Rapid Communications, 2009, 30, 1167-	78 .8	67
172	Normal capillary forces. Advances in Colloid and Interface Science, 2009, 146, 48-60	14.3	413
171	Effects of Chain Topology on the Tracer Diffusion in Star Polyisoprenes. <i>Macromolecules</i> , 2009 , 42, 918.	3-9989	22
170	Impedance spectroscopy investigation of conjugated polymer coated core-shell nanoparticles. <i>Journal of Applied Physics</i> , 2009 , 106, 063706	2.5	4
169	Transition in the evaporation kinetics of water microdrops on hydrophilic surfaces. <i>Langmuir</i> , 2009 , 25, 75-8	4	53
168	Quantitative characterization of nanoadhesion by dynamic force spectroscopy. <i>Langmuir</i> , 2009 , 25, 256	-641	19
167	Direct studies of liquid flows near solid surfaces by total internal reflection fluorescence cross-correlation spectroscopy. <i>Optics Express</i> , 2009 , 17, 21149-58	3.3	25
166	Interaction of cationic hydrophobic surfactants at negatively charged surfaces investigated by atomic force microscopy. <i>Langmuir</i> , 2009 , 25, 11509-15	4	10
165	Exciton diffusion controlled quantum efficiency in hybrid dye sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 1604-9	3.6	7
164	Atomic Force Microscope Cantilevers Used as Sensors for Monitoring Microdrop Evaporation. <i>Nanoscience and Technology</i> , 2009 , 17-38	0.6	
163	Localized instabilities of colloidal motion in ac electric field gradients. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 404212	1.8	4
162	Self-assembly, molecular dynamics, and kinetics of structure formation in dipole-functionalized discotic liquid crystals. <i>Journal of the American Chemical Society</i> , 2008 , 130, 5311-9	16.4	71
161	Capillary forces: influence of roughness and heterogeneity. <i>Langmuir</i> , 2008 , 24, 4715-21	4	101
160	Effect of chain topology on the self-organization and dynamics of block copolypeptides: from diblock copolymers to stars. <i>Biomacromolecules</i> , 2008 , 9, 1959-66	6.9	29
159	Evaporation of sessile water/ethanol drops in a controlled environment. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 7150-7	3.6	100
158	Forces between thiolate-modified gold surfaces in a melt of end-functionalized polymers. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 2001-7	3.4	7
157	Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: an experimental investigation. <i>Langmuir</i> , 2008 , 24, 10565-8	4	145
156	Influence of Humidity on Adhesion: An Atomic Force Microscope Study. <i>Journal of Adhesion Science and Technology</i> , 2008 , 22, 181-203	2	43

155	Surface-Induced Ordering of Liquid Crystal on Modified Surfaces 2008, 39-47		3
154	Evaporation dynamics of sessile liquid drops in still air with constant contact radius. <i>International Journal of Heat and Mass Transfer</i> , 2008 , 51, 3696-3699	4.9	75
153	A new method for the analysis of compaction processes in high-porosity agglomerates. <i>Granular Matter</i> , 2008 , 10, 89-91	2.6	3
152	From native to non-native two-dimensional protein lattices through underlying hydrophilic/hydrophobic nanoprotrusions. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 4707-1	o ^{16.4}	24
151	Influence of Binding-Site Density in Wet Bioadhesion. Advanced Materials, 2008, 20, 3872-3876	24	78
150	From Native to Non-Native Two-Dimensional Protein Lattices through Underlying Hydrophilic/Hydrophobic Nanoprotrusions. <i>Angewandte Chemie</i> , 2008 , 120, 4785-4788	3.6	3
149	Thin liquid films studied by atomic force microscopy. <i>Current Opinion in Colloid and Interface Science</i> , 2008 , 13, 107-119	7.6	44
148	Interaction between Solid Surfaces in a Melt of End-Functionalized Polymers. <i>Macromolecules</i> , 2007 , 40, 2520-2523	5.5	7
147	Interaction of Solid Surfaces Across Binary Mixtures of Polymer Melts. <i>Macromolecules</i> , 2007 , 40, 4088-	-49931	9
146	Nanowear on polymer films of different architecture. <i>Langmuir</i> , 2007 , 23, 3150-6	4	46
146	Nanowear on polymer films of different architecture. <i>Langmuir</i> , 2007 , 23, 3150-6 Evaporation Structures of Solvent Drops Evaporating from Polymer Surfaces: Influence of Molar Mass. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2134-2144	2.6	46 24
	Evaporation Structures of Solvent Drops Evaporating from Polymer Surfaces: Influence of Molar		
145	Evaporation Structures of Solvent Drops Evaporating from Polymer Surfaces: Influence of Molar Mass. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2134-2144 Impact of atomic force microscopy on interface and colloid science. <i>Advances in Colloid and</i>	2.6	24
145	Evaporation Structures of Solvent Drops Evaporating from Polymer Surfaces: Influence of Molar Mass. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2134-2144 Impact of atomic force microscopy on interface and colloid science. <i>Advances in Colloid and Interface Science</i> , 2007 , 133, 91-104 Miscibility of binary blends of ethylene/norbornene copolymers: Comparison to a lattice cluster	2.6	24
145 144 143	Evaporation Structures of Solvent Drops Evaporating from Polymer Surfaces: Influence of Molar Mass. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2134-2144 Impact of atomic force microscopy on interface and colloid science. <i>Advances in Colloid and Interface Science</i> , 2007 , 133, 91-104 Miscibility of binary blends of ethylene/norbornene copolymers: Comparison to a lattice cluster theory. <i>Polymer</i> , 2007 , 48, 6010-6017 On the derivation of Young's equation for sessile drops: nonequilibrium effects due to evaporation.	2.6 14.3 3.9	24676
145 144 143	Evaporation Structures of Solvent Drops Evaporating from Polymer Surfaces: Influence of Molar Mass. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2134-2144 Impact of atomic force microscopy on interface and colloid science. <i>Advances in Colloid and Interface Science</i> , 2007 , 133, 91-104 Miscibility of binary blends of ethylene/norbornene copolymers: Comparison to a lattice cluster theory. <i>Polymer</i> , 2007 , 48, 6010-6017 On the derivation of Young's equation for sessile drops: nonequilibrium effects due to evaporation. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 5277-83 Stress and failure at mechanical contacts of microspheres under uniaxial compression. <i>Journal of</i>	2.6 14.3 3.9	2467671
145 144 143 142	Evaporation Structures of Solvent Drops Evaporating from Polymer Surfaces: Influence of Molar Mass. <i>Macromolecular Chemistry and Physics</i> , 2007 , 208, 2134-2144 Impact of atomic force microscopy on interface and colloid science. <i>Advances in Colloid and Interface Science</i> , 2007 , 133, 91-104 Miscibility of binary blends of ethylene/norbornene copolymers: Comparison to a lattice cluster theory. <i>Polymer</i> , 2007 , 48, 6010-6017 On the derivation of Young's equation for sessile drops: nonequilibrium effects due to evaporation. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 5277-83 Stress and failure at mechanical contacts of microspheres under uniaxial compression. <i>Journal of Applied Physics</i> , 2007 , 101, 084908 Forces Between Solid Surfaces Across Polymer Melts as Revealed by Atomic Force Microscopy. <i>Soft</i>	2.6 14.3 3.9 3.4 2.5	24 67 6 71 3

(2005-2007)

137	Ultrafine cohesive powders: From interparticle contacts to continuum behaviour. <i>Chemical Engineering Science</i> , 2007 , 62, 2843-2864	4.4	64
136	Diffusion and conformation of peptide-functionalized polyphenylene dendrimers studied by fluorescence correlation and 13C NMR spectroscopy. <i>Biomacromolecules</i> , 2007 , 8, 1745-50	6.9	37
135	Quantitative measurement of friction between single microspheres by friction force microscopy. <i>Langmuir</i> , 2007 , 23, 8392-9	4	26
134	Towards Powering Nanometer-Scale Devices with Molecular Motors: Single Molecule Engines. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 573-575	2.6	13
133	Organization of Charge-Carrier Pathways for Organic Electronics. <i>Advanced Materials</i> , 2006 , 18, 2255-27	2 5 9	75
132	Sessile-drop-induced bending of atomic force microscope cantilevers: a model system for monitoring microdrop evaporation. <i>Journal of Micromechanics and Microengineering</i> , 2006 , 16, 2273-225	в∂	30
131	Chapter 7 Atomic Force Microscopy of Lipid Bilayers. <i>Behavior Research Methods</i> , 2006 , 3, 219-249	6.1	1
130	Modified atomic force microscope for high-rate dynamic force spectroscopy. <i>Applied Physics Letters</i> , 2006 , 88, 263109	3.4	15
129	Electrostatic forces acting on tip and cantilever in atomic force microscopy. <i>Physical Review B</i> , 2006 , 74,	3.3	26
128	Pressure distribution in a mechanical microcontact. <i>Applied Physics Letters</i> , 2006 , 88, 234101	3.4	8
127	Thermodynamics and rheology of cycloolefin copolymers. <i>Journal of Chemical Physics</i> , 2006 , 124, 13490)3 3.9	12
126	Using capillary forces to determine the geometry of nanocontacts. <i>Journal of Applied Physics</i> , 2006 , 100, 024312	2.5	54
125	Rupture force changes between the third strand and the double strand within an oligonucleotide-directed triplex in the presence of intercalative molecules. <i>Applied Physics Letters</i> , 2006 , 89, 113902	3.4	6
124	On the adhesion between fine particles and nanocontacts: an atomic force microscope study. <i>Langmuir</i> , 2006 , 22, 2171-84	4	140
123	Microstructures by solvent drop evaporation on polymer surfaces: dependence on molar mass. <i>Langmuir</i> , 2006 , 22, 11395-9	4	21
122	Quasi-static and hydrodynamic interaction between solid surfaces in polyisoprene studied by atomic force microscopy. <i>Polymer</i> , 2006 , 47, 7259-7270	3.9	14
121	Control of surface properties of self-assembled monolayers by tuning the degree of molecular asymmetry. <i>Surface Science</i> , 2006 , 600, 2847-2856	1.8	23
120	Structure of self-assembled n-dodecyl substituted azobenzene poly(phenylene) dendrimers on graphite. <i>Journal of Materials Chemistry</i> , 2005 , 15, 3431		6

119	Morphosynthesis of strontianite nanowires using polyacrylate templates tethered onto self-assembled monolayers. <i>Langmuir</i> , 2005 , 21, 3981-6	4	14
118	Microdrops on atomic force microscope cantilevers: evaporation of water and spring constant calibration. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 253-63	3.4	65
117	Boundary slip in Newtonian liquids: a review of experimental studies. <i>Reports on Progress in Physics</i> , 2005 , 68, 2859-2897	14.4	797
116	Contact angles and wetting behaviour of single micron-sized particles. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, S445-S464	1.8	45
115	Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte. <i>Langmuir</i> , 2005 , 21, 5882-6	4	17
114	Analyzing the Compaction of High-Porosity Microscopic Agglomerates. <i>Australian Journal of Chemistry</i> , 2005 , 58, 671	1.2	5
113	Force measurements with the atomic force microscope: Technique, interpretation and applications. <i>Surface Science Reports</i> , 2005 , 59, 1-152	12.9	2599
112	Interaction between solid surfaces in a polymer melt studied by atomic force microscopy. <i>European Polymer Journal</i> , 2005 , 41, 663-667	5.2	4
111	Direct measurements of particle-bubble interactions. <i>Advances in Colloid and Interface Science</i> , 2005 , 114-115, 165-72	14.3	68
110	Atomic force microscopy in structured liquids: remark on the interpretation of jumps in force curves. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2005 , 252, 165-168	5.1	13
109	Crystallization of Vaterite Nanowires by the Cooperative Interaction of Tailor-Made Nucleation Surfaces and Polyelectrolytes. <i>Advanced Functional Materials</i> , 2005 , 15, 683-688	15.6	65
108	Interaction between two solid surfaces across PDMS: influence of chain length and end group. <i>Composite Interfaces</i> , 2005 , 12, 805-815	2.3	2
107	Fabrication of microvessels and microlenses from polymers by solvent droplets. <i>Applied Physics Letters</i> , 2005 , 86, 124101	3.4	69
106	Adhesion of carbonyl iron powder particles studied by atomic force microscopy. <i>Journal of Adhesion Science and Technology</i> , 2005 , 19, 199-213	2	15
105	Surface forces in a confined polymer melt: self-consistent field analysis of full and restricted equilibrium cases. <i>Physical Review E</i> , 2005 , 72, 021807	2.4	13
104	Rupture force between the third strand and the double strand within a triplex DNA. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13992-7	16.4	31
103	Microarrays by structured substrate swelling. European Polymer Journal, 2004, 40, 975-980	5.2	16
102	Confined polymer melts studied by atomic force microscopy. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2004 , 250, 203-209	5.1	12

(2002-2004)

101	Adhesion between Solid Surfaces in Polymer Melts: Bridging of Single Chains. <i>Macromolecules</i> , 2004 , 37, 6086-6089	5.5	29
100	Equilibrium interaction of solid surfaces across a polymer melt. <i>Langmuir</i> , 2004 , 20, 8030-4	4	20
99	Using the atomic force microscope to study the interaction between two solid supported lipid bilayers and the influence of synapsin I. <i>Biophysical Journal</i> , 2004 , 87, 2446-55	2.9	80
98	Tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements. <i>Langmuir</i> , 2004 , 20, 2760-4	4	72
97	Attraction between hydrophobic surfaces studied by atomic force microscopy. <i>International Journal of Mineral Processing</i> , 2003 , 72, 215-225		75
96	Surface roughness and hydrodynamic boundary slip of a newtonian fluid in a completely wetting system. <i>Physical Review Letters</i> , 2003 , 90, 144501	7.4	244
95	The Colloidal Probe Technique and its Application to Adhesion Force Measurements. <i>Particle and Particle Systems Characterization</i> , 2002 , 19, 129	3.1	177
94	Tip penetration through lipid bilayers in atomic force microscopy. <i>Colloids and Surfaces B: Biointerfaces</i> , 2002 , 23, 191-200	6	91
93	Rupture of molecular thin films observed in atomic force microscopy. II. Experiment. <i>Physical Review E</i> , 2002 , 66, 031602	2.4	96
92	Confined liquid: Simultaneous observation of a molecularly layered structure and hydrodynamic slip. <i>Journal of Chemical Physics</i> , 2002 , 117, 10311-10314	3.9	51
91	Rupture of molecular thin films observed in atomic force microscopy. I. Theory. <i>Physical Review E</i> , 2002 , 66, 031601	2.4	96
90	Analyzing Electric Double Layers with the Atomic Force Microscope 2002,		1
89	Confined Liquids: Solvation Forces in Liquid Alcohols between Solid Surfaces. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 1703-1708	3.4	58
88	Two-Dimensional Structure of Self-Assembled Alkyl-Substituted Polyphenylene Dendrimers on Graphite. <i>Langmuir</i> , 2002 , 18, 2398-2405	4	36
87	Adhesion forces between individual gold and polystyrene particles. <i>Journal of Adhesion Science and Technology</i> , 2002 , 16, 829-843	2	28
86	Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects. <i>Physical Review Letters</i> , 2002 , 88, 076103	7.4	237
85	Water Induced Dewetting of Ultrathin Polystyrene Films on Hydrophilic Surfaces. <i>Langmuir</i> , 2002 , 18, 8056-8061	4	29
84	The Colloidal Probe Technique and its Application to Adhesion Force Measurements 2002 , 19, 129		1

83	The Colloidal Probe Technique and its Application to Adhesion Force Measurements 2002 , 19, 129		1
82	Wetting of ultrathin layers of polystyrene studied by atomic force microscopy. <i>Studies in Surface Science and Catalysis</i> , 2001 , 132, 729-736	1.8	1
81	Real-time atomic force fluorescence microscopy on living cells 2001 , 4434, 142		
80	Micromechanical cantilever-based biosensors. Sensors and Actuators B: Chemical, 2001, 79, 115-126	8.5	560
79	Friction between Individual Microcontacts. <i>Journal of Colloid and Interface Science</i> , 2001 , 244, 432-435	9.3	37
78	A Study of the Linear Tension Effect on the Polystyrene Microsphere Wettability with Water. <i>Colloid Journal</i> , 2001 , 63, 518-525	1.1	13
77	Dynamic effects on force measurements. I. Viscous drag on the atomic force microscope cantilever. <i>Review of Scientific Instruments</i> , 2001 , 72, 2330-2339	1.7	83
76	Measuring normal and friction forces acting on individual fine particles. <i>Review of Scientific Instruments</i> , 2001 , 72, 4164-4170	1.7	60
75	Epitaxial growth of SrBi2Ta2O9 on silicon. <i>Ferroelectrics</i> , 2001 , 255, 111-122	0.6	1
74	Forces between polystyrene surfaces in waterBlectrolyte solutions: Long-range attraction of two types?. <i>Journal of Chemical Physics</i> , 2001 , 114, 8124-8131	3.9	65
73	Self-Assembly of Alkyl-Substituted Polyphenylene Dendrimers on Graphite. <i>Macromolecules</i> , 2001 , 34, 3661-3671	5.5	31
72	Changes in surface stress at the liquid/solid interface measured with a microcantilever. <i>Electrochimica Acta</i> , 2000 , 46, 157-163	6.7	62
71	Contact angles on hydrophobic microparticles at waterBir and waterBexadecane interfaces. Journal of Adhesion Science and Technology, 2000 , 14, 1783-1799	2	52
70	Analysis of plastic deformation in atomic force microscopy: Application to ice. <i>Journal of Chemical Physics</i> , 2000 , 113, 1194-1203	3.9	35
69	Interaction Forces between Hydrophobic Surfaces. Attractive Jump as an Indication of Formation of Btable Bubmicrocavities. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 3407-3410	3.4	108
68	Adsorption of Membrane-Associated Proteins to Lipid Bilayers Studied with an Atomic Force Microscope: Myelin Basic Protein and Cytochrome c. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 4552-45	5 3 9	73
67	Measuring the Thickness of the Liquid-like Layer on Ice Surfaces with Atomic Force Microscopy. <i>Langmuir</i> , 2000 , 16, 6709-6714	4	228
66	Formation of nanorods by self-assembly of alkyl-substituted polyphenylene dendrimers on graphite. <i>Chemical Communications</i> , 2000 , 1169-1170	5.8	28

65	Atomic Force Microscopy Deposition of Poly-l-lysine Structures onto Lipid Bilayers Supported by Mica. <i>Langmuir</i> , 2000 , 16, 9568-9570	4	14
64	Measuring electrostatic double-layer forces on HOPG at high surface potentials. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 149, 145-150	5.1	21
63	Direct measurement of forces between particles and bubbles. <i>International Journal of Mineral Processing</i> , 1999 , 56, 99-115		87
62	Microsphere tensiometry to measure advancing and receding contact angles on individual particles. <i>Journal of Adhesion Science and Technology</i> , 1999 , 13, 1181-1191	2	49
61	Steric Forces Measured with the Atomic Force Microscope at Various Temperatures. <i>Langmuir</i> , 1999 , 15, 2559-2565	4	200
60	Heterogeneous polymer-containing films: a comparison of macroscopic properties with microscopic properties determined by atomic force microscopy. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 4881-4	1887	5
59	Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope. <i>Biophysical Journal</i> , 1999 , 76, 1072-9	2.9	79
58	Mercaptophenol-Protected Gold Colloids as Nuclei for the Crystallization of Inorganic Minerals: ´Templated Crystallization on Curved Surfaces. <i>Chemistry of Materials</i> , 1999 , 11, 1317-1325	9.6	58
57	Adhesion and Friction Forces between Spherical Micrometer-Sized Particles. <i>Physical Review Letters</i> , 1999 , 83, 3328-3331	7.4	325
56	Monolayers of asymmetrical diethylalkanoat disulfides on gold(111):.the influence of chain length difference on atomic force microscope images. <i>Applied Physics A: Materials Science and Processing</i> , 1998 , 66, S1261-S1266	2.6	7
55	Measuring the Contact Angle of Individual Colloidal Particles. <i>Journal of Colloid and Interface Science</i> , 1998 , 208, 468-477	9.3	128
54	Rough Surfaces by Design: Gold Colloids Tethered to Gold Surfaces as Substrates for CaCO3 Crystallization. <i>Advanced Materials</i> , 1998 , 10, 401-404	24	30
53	Templated Crystallisation of Calcium and Strontium Carbonates on Centred Rectangular Self-Assembled Monolayer Substrates. <i>Chemistry - A European Journal</i> , 1998 , 4, 1834-1842	4.8	122
52	Preliminary results on the electrostatic double-layer force between two surfaces with high surface potentials. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1998 , 136, 191-197	5.1	43
51	Surface Properties of Ice Studied by Atomic Force Microscopy. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 7813-7819	3.4	59
50	Two-Dimensional Structure of Disulfides and Thiols on Gold(111). <i>Langmuir</i> , 1998 , 14, 808-815	4	69
49	Direct Measurement of Particle B ubble Interactions in Aqueous Electrolyte: Dependence on Surfactant. <i>Langmuir</i> , 1998 , 14, 3164-3174	4	219
48	Surfactant Aggregates at a Metal Surface. <i>Langmuir</i> , 1997 , 13, 1381-1384	4	166

47	Chloroplast F0F1 ATP Synthase Imaged by Atomic Force Microscopy. <i>Journal of Structural Biology</i> , 1997 , 119, 139-48	3.4	27
46	Investigation of latex particle morphology and surface structure of the corresponding coatings by atomic force microscopy. <i>Progress in Organic Coatings</i> , 1997 , 32, 75-80	4.8	12
45	Cibacron Blue F3G-A anchored monolayers with biospecific affinity for NAD(H)-dependent lactate dehydrogenase: characterization by FTIR-spectroscopy and atomic force microscopy. <i>Biosensors and Bioelectronics</i> , 1997 , 12, 839-852	11.8	12
44	Measuring Electrostatic Double-Layer Forces at High Surface Potentials with the Atomic Force Microscope. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 16700-16705		52
43	Self-Assembled Monolayers of Symmetrical and Mixed Alkyl Fluoroalkyl Disulfides on Gold. 2. Investigation of Thermal Stability and Phase Separation. <i>Langmuir</i> , 1996 , 12, 3898-3904	4	79
42	Self-Assembled Monolayers of Discotic Liquid Crystalline Thioethers, Discoid Disulfides, and Thiols on Gold: Molecular Engineering of Ordered Surfaces. <i>Journal of the American Chemical Society</i> , 1996 , 118, 13051-13057	16.4	72
41	Morphology of heterogeneous latex particles investigated by atomic force microscopy 1996 , 91-95		9
40	STM of metal embedded and coated DNA and DNA-protein complexes. <i>Journal of Microscopy</i> , 1996 , 182, 169-76	1.9	6
39	A Sensitive Method to Measure Changes in the Surface Stress of Solids. <i>Journal of Colloid and Interface Science</i> , 1996 , 180, 251-260	9.3	195
38	The atomic force microscope as a tool to study and manipulate local surface properties. <i>Biosensors and Bioelectronics</i> , 1996 , 11, 601-612	11.8	18
37	Structure of Alkyl and Perfluoroalkyl Disulfide and Azobenzenethiol Monolayers on Gold(111) Revealed by Atomic Force Microscopy. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 2290-2301		92
36	Measuring surface forces in aqueous electrolyte solution with the atomic force microscope. <i>Bioelectrochemistry</i> , 1995 , 38, 191-201		205
35	Height calibration of optical lever atomic force microscopes by simple laser interferometry. <i>Review of Scientific Instruments</i> , 1995 , 66, 1258-1259	1.7	108
34	Measuring Electrochemically Induced Surface Stress with an Atomic Force Microscope. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 15728-15732		118
33	Deposition of Organic Material by the Tip of a Scanning Force Microscope. <i>Langmuir</i> , 1995 , 11, 1061-10)6 <u>4</u>	127
32	Artifacts in Force Measurements with the Atomic Force Microscope Due to Digitalization. <i>Langmuir</i> , 1995 , 11, 1065-1067	4	9
31	Calculation of thermal noise in atomic force microscopy. <i>Nanotechnology</i> , 1995 , 6, 1-7	3.4	1235
30	End-Group-Dominated Molecular Order in Self-Assembled Monolayers. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 7102-7107		130

(1990-1995)

29	Imaging Homogeneous and Composite Latex Particles with an Atomic Force Microscope. <i>Langmuir</i> , 1995 , 11, 4735-4741	4	33
28	Latex film formation studied with the atomic force microscope: Influence of aging and annealing. <i>Colloid and Polymer Science</i> , 1994 , 272, 1218-1223	2.4	46
27	A Technique for Measuring the Force between a Colloidal Particle in Water and a Bubble. <i>Journal of Colloid and Interface Science</i> , 1994 , 166, 109-117	9.3	211
26	Imaging flagella of halobacteria by atomic force microscopy. <i>Analyst, The</i> , 1994 , 119, 1943	5	13
25	Immobilizing Biomolecules for Scanning Force Microscopy by Embedding in Carbon. <i>Journal of Structural Biology</i> , 1993 , 110, 127-132	3.4	20
24	Scan speed limit in atomic force microscopy. <i>Journal of Microscopy</i> , 1993 , 169, 75-84	1.9	179
23	Charge transport of ion pumps on lipid bilayer membranes. <i>Quarterly Reviews of Biophysics</i> , 1993 , 26, 1-25	7	32
22	Imaging molecular defects in alkanethiol monolayers with an atomic force microscope. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 7316-7320		44
21	Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. <i>Physical Review B</i> , 1992 , 45, 11226-11232	3.3	382
20	Measuring local surface charge densities in electrolyte solutions with a scanning force microscope. <i>Biophysical Journal</i> , 1992 , 63, 578-82	2.9	135
19	Quantitative scanning tunneling microscopy and scanning force microscopy of organic materials. <i>Ultramicroscopy</i> , 1992 , 46, 375-393	3.1	82
18	Atomic force microscopy. <i>Progress in Surface Science</i> , 1992 , 41, 3-49	6.6	179
17	Effect of surface roughness of carbon support films on high-resolution electron diffraction of two-dimensional protein crystals. <i>Ultramicroscopy</i> , 1991 , 36, 307-318	3.1	45
16	Imaging purple membranes dry and in water with the atomic force microscope. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1991 , 9, 1193		25
15	Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. <i>Biophysical Journal</i> , 1991 , 60, 1438-44	2.9	645
14	Electrostatic interaction in atomic force microscopy. <i>Biophysical Journal</i> , 1991 , 60, 777-85	2.9	187
13	Quantum efficiency of native and mutant bacteriorhodopsin obtained from blue light induced relaxation experiments. <i>European Biophysics Journal</i> , 1990 , 19, 31	1.9	1
12	The atomic force microscope: A tool for science and industry. <i>Ultramicroscopy</i> , 1990 , 33, 93-98	3.1	51

11	Imaging metal atoms in air and water using the atomic force microscope. <i>Applied Physics Letters</i> , 1990 , 56, 1758-1759	3.4	61
10	Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. <i>Biophysical Journal</i> , 1990 , 58, 1473-80	2.9	203
9	Imaging cells with the atomic force microscope. <i>Journal of Structural Biology</i> , 1990 , 105, 54-61	3.4	231
8	A defective proton pump, point-mutated bacteriorhodopsin Asp96Asn is fully reactivated by azide <i>EMBO Journal</i> , 1989 , 8, 3477-3482	13	134
7	Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump <i>EMBO Journal</i> , 1989 , 8, 1657-1663	13	185
6	Temperature jump study of charge translocation during the bacteriorhodopsin photocycle. <i>Biophysical Journal</i> , 1989 , 56, 851-9	2.9	22
5	Electron identification up to 100 GeV by means of transition radiation. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1986 , 252, 483-487	1.2	8
4	Phase Diagram of Tapered Copolymers Based on Isoprene and Styrene. <i>Macromolecular Chemistry and Physics</i> ,2200033	2.6	2
3	Enhanced Condensation on Soft Materials through Bulk Lubricant Infusion. <i>Advanced Functional Materials</i> ,2109633	15.6	1
2	Spontaneous charging affects the motion of sliding drops. <i>Nature Physics</i> ,	16.2	12
1	Red-Light-Responsive Metallopolymer Nanocarriers with Conjugated and Encapsulated Drugs for Phototherapy Against Multidrug-Resistant Tumors. <i>Small</i> ,2201672	11	1