
Maciej Mikulski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1870401/publications.pdf Version: 2024-02-01

MACIEL MIKULSKI

#	Article	IF	CITATIONS
1	Comparison of performance and emissions of a CRDI diesel engine fuelled with biodiesel of different origin. Fuel, 2018, 212, 202-222.	3.4	72
2	Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine – A simulation study. Applied Energy, 2017, 191, 689-708.	5.1	66
3	Performance and emissions of a CRDI diesel engine fuelled with swine lard methyl esters–diesel mixture. Fuel, 2016, 164, 206-219.	3.4	65
4	Numerical investigation of the impact of gas composition on the combustion process in a dual-fuel compression-ignition engine. Journal of Natural Gas Science and Engineering, 2016, 31, 525-537.	2.1	58
5	Efficient hydrotreated vegetable oil combustion under partially premixed conditions with heavy exhaust gas recirculation. Fuel, 2020, 268, 117350.	3.4	43
6	Combustion engine applications of waste tyre pyrolytic oil. Progress in Energy and Combustion Science, 2021, 85, 100915.	15.8	38
7	An applicable approach to mitigate pressure rise rate in an HCCI engine with negative valve overlap. Applied Energy, 2020, 257, 114018.	5.1	28
8	Partially premixed combustion of hydrotreated vegetable oil in a diesel engine: Sensitivity to boost and exhaust gas recirculation. Fuel, 2022, 307, 121910.	3.4	28
9	Variable Valve Actuation Strategies for Better Efficiency Load Range and Thermal Management in an RCCI Engine. , 0, , .		26
10	Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel. Renewable Energy, 2020, 148, 739-755.	4.3	24
11	EFFECT OF CNG IN A FUEL DOSE ON THE COMBUSTION PROCESS OF A COMPRESSION-IGNITION ENGINE. Transport, 2015, 30, 162-171.	0.6	23
12	Reactivity Controlled Compression Ignition for clean and efficient ship propulsion. Energy, 2019, 182, 1173-1192.	4.5	23
13	Investigation of the thermal effects of fuel injection into retained residuals in HCCI engine. Applied Energy, 2018, 228, 1966-1984.	5.1	21
14	Evaluating the Influence of Cetane Improver Additives on the Outcomes of a Diesel Engine Characteristics Fueled with Peppermint Oil Diesel Blend. Energies, 2021, 14, 2786.	1.6	21
15	Zero-dimensional 2-phase combustion model in a dual-fuel compression ignition engine fed with gaseous fuel and a divided diesel fuel charge. Eksploatacja I Niezawodnosc, 2015, 17, 42-48.	1.1	21
16	Natural gas-diesel reactivity controlled compression ignition with negative valve overlap and in-cylinder fuel reforming. Applied Energy, 2019, 254, 113638.	5.1	19
17	Detailed analysis of combustion stability in a spark-assisted compression ignition engine under nearly stoichiometric and heavy EGR conditions. Applied Energy, 2020, 280, 115955.	5.1	18
18	Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2015, 36, 225-238.	0.7	17

Maciej Mikulski

#	Article	IF	CITATIONS
19	Thermo-kinetic multi-zone modelling of low temperature combustion engines. Progress in Energy and Combustion Science, 2022, 91, 100998.	15.8	15
20	Tyre pyrolytic oil fuel blends in a modern compression ignition engine: A comprehensive combustion and emissions analysis. Fuel, 2022, 320, 123869.	3.4	14
21	Development of a digital twin for real-time simulation of a combustion engine-based power plant with battery storage and grid coupling. Energy Conversion and Management, 2022, 266, 115793.	4.4	14
22	Validation of a zero-dimensional and 2-phase combustion model for dual-fuel compression ignition engine simulation. Thermal Science, 2017, 21, 387-399.	0.5	13
23	EMISSIONS FROM A MEDIUM-DUTY CRDI ENGINE FUELLED WITH DIESEL-BIODIESEL BLENDS. Transport Problems, 2021, 16, 39-49.	0.3	10
24	Comparative study of combustion and emissions of diesel engine fuelled with FAME and HVO. Silniki Spalinowe, 2021, 184, 72-78.	0.4	10
25	Research of Parameters of a Compression Ignition Engine Using Various Fuel Mixtures of Hydrotreated Vegetable Oil (HVO) and Fatty Acid Esters (FAE). Energies, 2021, 14, 3077.	1.6	10
26	TERNARY FUEL MIXTURE OF DIESEL, RAPESEED OIL AND TYRE PYROLYTIC OIL SUITABLE FOR MODERN CRDI ENGINES. Transport, 2018, 33, 727-740.	0.6	9
27	ANN meta-model assisted MOPSO application in an EPA-Tier 4 constrained emission-performance trade-off calibration problem of a hydrogen-diesel-EGR dual fuel operation. Fuel, 2017, 208, 746-778.	3.4	8
28	On the adaptation of CAN BUS network for use in the ship electronic systems. Polish Maritime Research, 2009, 16, 62-69.	0.6	7
29	Excess Air Ratio Management in a Diesel Engine with Exhaust Backpressure Compensation. Sensors, 2020, 20, 6701.	2.1	7
30	THE CONCEPT AND CONSTRUCTION OF THE ENGINE TEST BED FOR EXPERIMENTS WITH A MULTI-FUEL CI ENGINE FED WITH CNG AND LIQUID FUEL AS AN IGNITION DOSE. Journal of KONES, 2015, 19, 289-296.	0.2	7
31	Toward a digital twin of a mid-speed marine engine: From detailed 1D engine model to real-time implementation on a target platform. International Journal of Engine Research, 2023, 24, 4553-4571.	1.4	7
32	Application of Variable Valve Actuation Strategies and Direct Gasoline Injection Schemes to Reduce Combustion Harshness and Emissions of Boosted HCCI Engine. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	0.5	4
33	Injection Strategy and EGR Optimization on a Viscosity-Improved Vegetable Oil Blend Suitable for Modern Compression Ignition Engines. SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 419-427.	2.0	4
34	Renewable Fuels for Internal Combustion Engines. Energies, 2021, 14, 7715.	1.6	4
35	Verification of a 2–Phase, Zero-Dimensional Model of a Multifuel Compression-Ignition Engine in Single Fuel Operation. Applied Mechanics and Materials, 2016, 817, 47-56.	0.2	3
36	INFLUENCE OF CONTRIBUTION OF BIOFUELS DERIVED FROM RENEWABLE MATERIALS IN THE FUEL ON THE COMBUSTION PROCESS AND TOXIC COMPOUNDS EMISSION OF COMPRESSION IGNITION ENGINE. Journal of KONES, 2014, 21, 343-351.	0.2	3

Maciej Mikulski

#	Article	IF	CITATIONS
37	Combustion of Gaseous Alternative Fuels in Compression Ignition Engines. , 0, , .		2
38	Late direct fuel injection for reduced combustion rates in a gasoline controlled auto-ignition engine. Thermal Science, 2018, 22, 1299-1309.	0.5	2
39	EFFECT OF DOPING DIESEL OIL WITH METHYL ESTERS ON PHYSICOCHEMICAL PROPERTIES OF THE OBTAINED FUEL, IN THE ASPECT OF ITS EXPLOITATION POTENTIAL. Journal of KONES, 2014, 21, 71-78.	0.2	2
40	An experimental analysis of performance and exhaust emissions of a CRDI diesel engine operating on mixtures containing mineral and renewable components. Silniki Spalinowe, 2019, 179, 27-31.	0.4	2
41	Effect of Fuel Pilot Dose Parameters on Efficiency of Dual-Fuel Compression Ignition Engines Fuelled with Biogas. Applied Mechanics and Materials, 0, 817, 19-26.	0.2	1
42	Application of Variable Valve Actuation Strategies and Direct Gasoline Injection Schemes to Reduce Combustion Harshness and Emissions of Boosted HCCI Engine. , 2018, , .		1
43	A Proposal Of Simulation Model Of A Wind-Steering System For Sailing Yachts, Based On Single-Stage Servo-Pendulum Coupled With Main Rudder. Polish Maritime Research, 2015, 22, 15-22.	0.6	0
44	HCCI combustion control using advanced gasoline direct injection techniques. MATEC Web of Conferences, 2018, 234, 03003.	0.1	0
45	EFFECT OF PILOT CHARGE SIZE AND BIOGAS COMPOSITION ON THE OPERATING EFFICIENCY OF A DUAL-FUEL COMPRESSION-IGNITION ENGINE. Journal of KONES, 2014, 21, 279-284.	0.2	0
46	THE IMPACT OF THE SHARE OF CNG ON THE COMBUSTION PROCESS IN A DUAL-FUEL COMPRESSION-IGNITION ENGINE WITH THE COMMON RAIL SYSTEM. Journal of KONES, 2016, 23, 415-422.	0.2	0
47	THE IMPACT OF THE SHARE OF BIOGAS IN A SUPPLY DOSE ON LOAD PARAMETERS IN THE COMBUSTION CHAMBER OF A DUAL-FUEL COMPRESSION-IGNITION ENGINE. Journal of KONES, 2016, 23, 407-414.	0.2	0
48	Experimental and Numerical Investigation into the Thermal Effects of Direct Fuel Injection in HCCI Engine. , 0, , .		0