Liancun Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1870364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Applied Mathematics Letters, 2014, 38, 87-93.	1.5	353
2	MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Applied Mathematical Modelling, 2015, 39, 165-181.	2.2	318
3	Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity. International Journal of Heat and Mass Transfer, 2014, 77, 708-716.	2.5	176
4	Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate. International Journal of Heat and Mass Transfer, 2015, 85, 1023-1033.	2.5	169
5	Analysis of MHD thermosolutal Marangoni convection with the heat generation and a first-order chemical reaction. Chemical Engineering Science, 2012, 69, 449-455.	1.9	71
6	Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo–Christov flux. Communications in Nonlinear Science and Numerical Simulation, 2016, 38, 45-58.	1.7	56
7	Marangoni boundary layer flow and heat transfer of copper-water nanofluid over a porous medium disk. AlP Advances, 2015, 5, .	0.6	53
8	Magnetohydrodynamics Thermocapillary Marangoni Convection Heat Transfer of Power-Law Fluids Driven by Temperature Gradient. Journal of Heat Transfer, 2013, 135, .	1.2	48
9	Marangoni convection of power law fluids driven by power-law temperature gradient. Journal of the Franklin Institute, 2012, 349, 2585-2597.	1.9	45
10	Heat transfer in pseudo-plastic non-Newtonian fluids with variable thermal conductivity. Energy Conversion and Management, 2011, 52, 355-358.	4.4	40
11	Unsteady MHD flow and radiation heat transfer of nanofluid in a finite thin film with heat generation and thermophoresis. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 226-234.	2.7	40
12	A new diffusion for laminar boundary layer flow of power law fluids past a flat surface with magnetic effect and suction or injection. International Journal of Heat and Mass Transfer, 2015, 90, 1090-1097.	2.5	35
13	Unsteady Marangoni convection heat transfer of fractional Maxwell fluid with Cattaneo heat flux. Applied Mathematical Modelling, 2017, 44, 497-507.	2.2	35
14	A spatial-fractional thermal transport model for nanofluid in porous media. Applied Mathematical Modelling, 2018, 53, 622-634.	2.2	35
15	Exact solutions for the unsteady rotating flows of a generalized Maxwell fluid with oscillating pressure gradient between coaxial cylinders. Computers and Mathematics With Applications, 2011, 62, 1105-1115.	1.4	33
16	Modeling heat transport in nanofluids with stagnation point flow using fractional calculus. Applied Mathematical Modelling, 2016, 40, 8974-8984.	2.2	33
17	Fractional anomalous diffusion with Cattaneo–Christov flux effects in a comb-like structure. Applied Mathematical Modelling, 2016, 40, 6663-6675.	2.2	32
18	A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer. Physics of Fluids, 2017, 29, 023105	1.6	31

#	Article	IF	CITATIONS
19	MHD Marangoni boundary layer flow and heat transfer of pseudo-plastic nanofluids over a porous medium with a modified model. Mechanics of Time-Dependent Materials, 2015, 19, 519-536.	2.3	30
20	On mixed convection of two immiscible layers with a layer of non-Newtonian nanofluid in a vertical channel. Powder Technology, 2017, 310, 351-358.	2.1	24
21	Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles: Lie group analysis. Applied Mathematics and Mechanics (English Edition), 2016, 37, 433-442.	1.9	23
22	BIFURCATION SOLUTIONS TO A BOUNDARY LAYER PROBLEM ARISING IN THE THEORY OF POWER LAW FLUIDS. Acta Mathematica Scientia, 2000, 20, 19-26.	0.5	22
23	Similarity Solutions of Marangoni Convection Boundary Layer Flow with Gravity and External Pressure. Chinese Journal of Chemical Engineering, 2014, 22, 365-369.	1.7	22
24	Existence and uniqueness of global solutions of caputo-type fractional differential equations. Fractional Calculus and Applied Analysis, 2016, 19, 765-774.	1.2	22
25	Lie group method for the modified model of MHD flow and heat transfer of a non-Newtonian fluid with prescribed heat flux over a moving porous plate. Journal of Molecular Liquids, 2016, 220, 768-777.	2.3	20
26	Comparison Between Thermal Conductivity Models on Heat Transfer in Power-Law Non-Newtonian Fluids. Journal of Heat Transfer, 2012, 134, .	1.2	19
27	Sedimentation and precipitation of nanoparticles in power-law fluids. Microfluidics and Nanofluidics, 2013, 15, 11-18.	1.0	18
28	A new model for Brownian force and the application to simulating nanofluid flow. Microfluidics and Nanofluidics, 2014, 16, 131-139.	1.0	18
29	Lie group analysis and similarity solution for fractional Blasius flow. Communications in Nonlinear Science and Numerical Simulation, 2016, 37, 90-101.	1.7	18
30	FLOW AND HEAT TRANSFER OF MHD VISCOUS FLUID OVER AN UNSTEADY STRETCHING SURFACE WITH RADIATION HEAT FLUX. Chemical Engineering Communications, 2012, 199, 1-16.	1.5	17
31	Improved drag force model and its application in simulating nanofluid flow. Microfluidics and Nanofluidics, 2014, 17, 253-261.	1.0	17
32	Heat transfer characteristics of thin power-law liquid films over horizontal stretching sheet with internal heating and variable thermal coefficient. Applied Mathematics and Mechanics (English) Tj ETQq0 0 0 rgB	T / Dy erloc	k 10 Tf 50 22
33	Analysis of the formation mechanism and occurrence possibility of Post-Stenotic Dilatation of the aorta by CFD approach. Computer Methods and Programs in Biomedicine, 2020, 194, 105522.	2.6	17
34	Unsteady natural convection heat transfer of nanofluid in an annulus with a sinusoidally heated source. Numerical Heat Transfer; Part A: Applications, 2016, 69, 97-108.	1.2	16
35	Effects of nonlinear velocity slip and temperature jump on pseudo-plastic power-law fluid over moving permeable surface in presence of magnetic field. Applied Mathematics and Mechanics (English) Tj ETQq1 	1 1097 843	1411gBT /Ove
36	Numerical simulation of magnetic nano drug targeting to atherosclerosis: Effect of plaque morphology (stenosis degree and shoulder length). Computer Methods and Programs in Biomedicine, 2020, 195, 105556.	2.6	16

#	Article	IF	CITATIONS
37	Suitable heat transfer model for self-similar laminar boundary layer in power law fluids. Journal of Thermal Science, 2004, 13, 150-154.	0.9	15
38	Hydrodynamic plane and axisymmetric slip stagnation-point flow with thermal radiation and temperature jump. Journal of Mechanical Science and Technology, 2011, 25, 1837-1844.	0.7	15
39	Fractional boundary layer flow and radiation heat transfer of MHD viscoelastic fluid over an unsteady stretching surface. AIP Advances, 2015, 5, 107133.	0.6	15
40	Precipitation phenomenon of nanoparticles in power-law fluids over a rotating disk. Microfluidics and Nanofluidics, 2014, 17, 107-114.	1.0	13
41	Evaluation of particle shape, size and magnetic field intensity for targeted delivery efficiency and plaque injury in treating atherosclerosis. Powder Technology, 2020, 366, 63-72.	2.1	13
42	Magnetohydrodynamic thin film and heat transfer of power law fluids over an unsteady stretching sheet with variable thermal conductivity. Thermal Science, 2016, 20, 1791-1800.	0.5	13
43	Marangoni Convection Heat and Mass Transport of Power-Law Fluid in Porous Medium with Heat Generation and Chemical Reaction. Heat Transfer Engineering, 2017, 38, 641-652.	1.2	12
44	Numerical study of thermal boundary layer on a continuous moving surface in power law fluids. Journal of Thermal Science, 2007, 16, 243-247.	0.9	11
45	A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids. Scientific Reports, 2016, 6, 19560.	1.6	11
46	Fractal aggregation kinetics contributions to thermal conductivity of nano-suspensions in unsteady thermal convection. Scientific Reports, 2016, 6, 39446.	1.6	11
47	Exact solution and invariant for fractional Cattaneo anomalous diffusion of cells in two-dimensional comb framework. Nonlinear Dynamics, 2017, 89, 213-224.	2.7	11
48	Fractional Boundary Layer Flow and Heat Transfer Over a Stretching Sheet With Variable Thickness. Journal of Heat Transfer, 2018, 140, .	1.2	11
49	A finite element method for heat transfer of powerâ€ŀaw flow in channels with a transverse magnetic field. Mathematical Methods in the Applied Sciences, 2014, 37, 1121-1129.	1.2	10
50	Magnetic nanoparticle drug targeting to patient-specific atherosclerosis: effects of magnetic field intensity and configuration. Applied Mathematics and Mechanics (English Edition), 2020, 41, 349-360.	1.9	10
51	A new model for flow and heat of a power law fluid in a pipe. Thermal Science, 2011, 15, 127-130.	0.5	9
52	Quantitative analysis of renal blood flow during thoracic endovascular aortic repair in type B aortic dissection using syngo iFlow. Quantitative Imaging in Medicine and Surgery, 2021, 11, 3726-3734.	1.1	9
53	Hall effect on MHD flow and heat transfer of nanofluids over a stretching wedge in the presence of velocity slip and Joule heating. Open Physics, 2013, 11, .	0.8	8
54	MHD thermosolutal marangoni convection heat and mass transport of power law fluid driven by temperature and concentration gradient. AIP Advances, 2015, 5, .	0.6	8

#	Article	IF	CITATIONS
55	Solving fractional partial differential equations in fluid mechanics by generalized differential transform method. , 2011, , .		7
56	Symmetry analysis and conservation laws to the space-fractional Prandtl equation. Nonlinear Dynamics, 2017, 90, 1343-1351.	2.7	7
57	The analysis of the suction/injection on the MHD Maxwell fluid past a stretching plate in the presence of nanoparticles by Lie group method. Open Physics, 2015, 13, .	0.8	6
58	Flow and Heat Transfer of Bingham Plastic Fluid over a Rotating Disk with Variable Thickness. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2016, 71, 1003-1015.	0.7	6
59	A New Model for Plastic-Viscoelastic Magnetohydrodynamic (MHD) Flow with Radiation Thermal Transfer. International Journal of Nonlinear Sciences and Numerical Simulation, 2013, 14, 435-441.	0.4	5
60	A Mixed Analytical/Numerical Method for Velocity and Heat Transfer of Laminar Power-Law Fluids. Numerical Mathematics, 2016, 9, 315-336.	0.6	5
61	Momentum and heat transfer in laminar boundary layer behind shock wave. Journal of Thermal Science, 2002, 11, 255-258.	0.9	4
62	Similarity solutions of momentum and energy equations for an axi-symmetric laminar jet. Journal of Thermal Science, 2004, 13, 334-337.	0.9	4
63	An analysis of the characteristics of the thermal boundary layer in power law fluid. Journal of Thermal Science, 2008, 17, 233-237.	0.9	4
64	Flow and Heat Transfer of Nanofluids Over a Rotating Porous Disk with Velocity Slip and Temperature Jump. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 351-358.	0.7	4
65	Unsteady Convective Heat Transfer of Power-Law Fluid with Variable Fluid Properties in a Concentric Annulus Originating from a Polymer Flooding Process. Numerical Heat Transfer; Part A: Applications, 2015, 68, 761-776.	1.2	4
66	Subdiffusions on circular branching structures. Communications in Nonlinear Science and Numerical Simulation, 2019, 77, 225-238.	1.7	4
67	Coupling Effects of Viscous Sheet and Ambient Fluid on Boundary Layer Flow and Heat Transfer in Power-Law Fluids. Journal of Heat Transfer, 2019, 141, .	1.2	4
68	Numerical investigations of temperature and hemodynamics in carotid arteries with and without atherosclerotic plaque during open surgery. Journal of Thermal Biology, 2020, 91, 102622.	1.1	4
69	Perturbation solutions for a micropolar fluid flow in a semi-infinite expanding or contracting pipe with large injection or suction through porous wall. Open Physics, 2016, 14, 231-238.	0.8	3
70	Non-Newtonian biomagnetic fluid flow through a stenosed bifurcated artery with a slip boundary condition. Applied Mathematics and Mechanics (English Edition), 2020, 41, 1611-1630.	1.9	3
71	Memory dependent anomalous diffusion in comb structure under distributed order time fractional dual-phase-lag model. International Journal of Biomathematics, 2021, 14, .	1.5	3
72	Effects of Viscous Dissipation on the Thermal Boundary Layer of Pseudoplastic Power-Law Non-Newtonian Fluids Using Discretization Method and the Boubaker Polynomials Expansion Scheme. ISRN Thermodynamics, 2012, 2012, 1-6.	0.6	3

#	Article	IF	CITATIONS
73	Numerical Methods for Solving Energy Equations of Dilatant Fluid Flow. , 2010, , .		2
74	Experimental investigation of dimensionless velocity and shearing stress in boundary layer flow on continuous moving surface in power law fluids. Journal of Thermal Science, 2011, 20, 115-118.	0.9	2
75	Unsteady MHD convection heat transfer along an accelerating/decelerating cylinder with variable fluid properties. European Physical Journal Plus, 2014, 129, 1.	1.2	2
76	Impact of Velocity Slip and Temperature Jump of Nanofluid in the Flow over a Stretching Sheet with Variable Thickness. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2016, 71, 413-425.	0.7	2
77	Heat Transfer of Power-Law Liquid Food in a Tank with Varying Stirrer Settings. International Journal of Food Engineering, 2019, 15, .	0.7	2
78	The initial, boundary value problems for a class of generalized diffusion equations. Journal of Thermal Science, 2002, 11, 31-34.	0.9	1
79	Analysis of heat and mass transfer in a thin liquid film over an unsteady stretching surface. , 2011, , .		1
80	Anomalous subdiffusion in angular and radial direction on a circular comb-like structure with nonisotropic relaxation. Applied Mathematical Modelling, 2018, 64, 615-623.	2.2	1
81	Enlarged Lumen Volume of Proximal Aortic Segment and Acute Type B Aortic Dissection: A Computer Fluid Dynamics Study of Ideal Aortic Models. International Journal of General Medicine, 2022, Volume 15, 535-543.	0.8	1
82	Numerical Investigation of a Two-Phase Nanofluid Model for Boundary Layer Flow Past a Variable Thickness Sheet. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2018, 73, 229-237.	0.7	0
83	On the drag effect of one fluid driven by another in a vertical channel. AIP Advances, 2018, 8, 115313.	0.6	ο
84	An Investigation of the Forced Convection and Heat Transfer with a Cylindrical Agitator Subjected to Non-Newtonian Nanofluids. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2018, 73, 869-882.	0.7	0
85	Heat Transfer of Fractional Maxwell Fluid over a Moving Plate with Cattaneo-Christov Flux. , 2019, , .		Ο
86	Unsteady Mixed Convection Heat Transfer of Fractional Viscoelastic Nanofluids over an Inclined Plate. , 2019, , .		0
87	Boundary Layer Mechanism of a Two-Phase Nanofluid Subject to Coupled Interface Dynamics of Fluid/Film. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2019, 75, 43-53.	0.7	0
88	Machine learning of synaptic structure with neurons to promote tumor growth. Applied Mathematics and Mechanics (English Edition), 2020, 41, 1697-1706.	1.9	0
89	Anomalous diffusion and heat transfer on comb structure with anisotropic relaxation in fractal porous media. Thermal Science, 2021, 25, 733-742.	0.5	0
90	On heat transfer of weakly compressible power-law flows. Thermal Science, 2017, 21, 2709-2718.	0.5	0

#	Article	IF	CITATIONS
91	Turbulent boundary layer heat transfer of CuO–water nanofluids on a continuously moving plate subject to convective boundary. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77, 369-377.	0.7	0