
Sven Pettersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1870363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host-Gut Microbiota Metabolic Interactions. Science, 2012, 336, 1262-1267.	6.0	3,693
2	Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3047-3052.	3.3	2,611
3	The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine, 2014, 6, 263ra158.	5.8	1,589
4	Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-Î ³ and RelA. Nature Immunology, 2004, 5, 104-112.	7.0	952
5	Local administration of antisense phosphorothiate olignucleotides to the p65 subunit of NF–κB abrogates established experimental colitis in mice. Nature Medicine, 1996, 2, 998-1004.	15.2	813
6	<i>TRAF1–C5</i> as a Risk Locus for Rheumatoid Arthritis — A Genomewide Study. New England Journal of Medicine, 2007, 357, 1199-1209.	13.9	729
7	Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nature Genetics, 2010, 42, 332-337.	9.4	572
8	Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell, 2018, 172, 500-516.e16.	13.5	563
9	Our Gut Microbiome: The Evolving Inner Self. Cell, 2017, 171, 1481-1493.	13.5	462
10	Expression of a transgenic class IIAb gene confers susceptibility to collagen-induced arthritis. European Journal of Immunology, 1994, 24, 1698-1702.	1.6	429
11	Microbiota Controls the Homeostasis of Glial Cells in the Gut Lamina Propria. Neuron, 2015, 85, 289-295.	3.8	271
12	The gut microbiota influences skeletal muscle mass and function in mice. Science Translational Medicine, 2019, 11, .	5.8	271
13	A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9990-9995.	3.3	267
14	The yopJ locus is required for Yersinia-mediated inhibition of NF-kappaB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Molecular Microbiology, 1998, 28, 1067-1079.	1.2	265
15	Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in <i>Apc</i> ^{<i>Min</i> /+ } mice with natural ligands. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13481-13486.	3.3	238
16	Decreased Fat Storage by Lactobacillus Paracasei Is Associated with Increased Levels of Angiopoietin-Like 4 Protein (ANGPTL4). PLoS ONE, 2010, 5, e13087.	1.1	227
17	A second B cell-specific enhancer 3' of the immunoglobulin heavy-chain locus. Nature, 1990, 344, 165-168.	13.7	214
18	Therapeutic Modulation of Microbiota-Host Metabolic Interactions. Science Translational Medicine, 2012, 4, 137rv6.	5.8	211

#	Article	IF	CITATIONS
19	Cytokine Gene Transcription By NF-kappaB Family Members in Patients with Inflammatory Bowel Disease. Annals of the New York Academy of Sciences, 1998, 859, 149-159.	1.8	208
20	Intestinal Microbiota Regulate Xenobiotic Metabolism in the Liver. PLoS ONE, 2009, 4, e6958.	1.1	204
21	Role of peroxisome proliferator-activated receptor Î ³ and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet, The, 2002, 360, 1410-1418.	6.3	181
22	Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APC Min/+ mice. Carcinogenesis, 2012, 33, 1231-1238.	1.3	175
23	Bromodomain-containing Protein 4 (BRD4) Regulates RNA Polymerase II Serine 2 Phosphorylation in Human CD4+ T Cells. Journal of Biological Chemistry, 2012, 287, 43137-43155.	1.6	164
24	Dissociation of EphB2 Signaling Pathways Mediating Progenitor Cell Proliferation and Tumor Suppression. Cell, 2009, 139, 679-692.	13.5	157
25	Retardation of post-natal development caused by a negatively acting thyroid hormone receptor α1. EMBO Journal, 2002, 21, 5079-5087.	3.5	156
26	The Wnt/Â-catenin signaling pathway targets PPARÂ activity in colon cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1460-1465.	3.3	144
27	Absence of Toll-Like Receptor 4 Explains Endotoxin Hyporesponsiveness in Human Intestinal Epithelium. Journal of Pediatric Gastroenterology and Nutrition, 2001, 32, 449-453.	0.9	142
28	The mouse lgH 3′-enhancer. European Journal of Immunology, 1991, 21, 1499-1504.	1.6	141
29	The coxsackie- and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis. Experimental Cell Research, 2006, 312, 1566-1580.	1.2	137
30	Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cellular Microbiology, 2008, 10, 1093-1103.	1.1	131
31	<i>Enterococcus faecalis</i> from newborn babies regulate endogenous PPARÎ ³ activity and IL-10 levels in colonic epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1943-1948.	3.3	123
32	Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice. Science Translational Medicine, 2019, 11, .	5.8	122
33	Inhibition of Activated/Memory (CD45RO+) T Cells by Oxidative Stress Associated with Block of NF-κB Activation. Journal of Immunology, 2001, 167, 2595-2601.	0.4	121
34	SB939, a Novel Potent and Orally Active Histone Deacetylase Inhibitor with High Tumor Exposure and Efficacy in Mouse Models of Colorectal Cancer. Molecular Cancer Therapeutics, 2010, 9, 642-652.	1.9	119
35	The role of gut dysbiosis in Parkinson's disease: mechanistic insights and therapeutic options. Brain, 2021, 144, 2571-2593.	3.7	119
36	Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15028-15033.	3.3	109

#	Article	IF	CITATIONS
37	De-Novo Identification of PPARγ/RXR Binding Sites and Direct Targets during Adipogenesis. PLoS ONE, 2009, 4, e4907.	1.1	106
38	The Gut Microbiota and Developmental Programming of the Testis in Mice. PLoS ONE, 2014, 9, e103809.	1.1	105
39	Metabolic tinkering by the gut microbiome. Gut Microbes, 2014, 5, 369-380.	4.3	105
40	Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism. Npj Biofilms and Microbiomes, 2016, 2, 16014.	2.9	105
41	The hygiene hypothesis, the COVID pandemic, and consequences for the human microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	100
42	AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3604-3613.	3.3	96
43	Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Scientific Reports, 2016, 6, 20127.	1.6	92
44	Gut microbial communities modulating brain development and function. Gut Microbes, 2012, 3, 366-373.	4.3	85
45	Incomplete Systemic Recovery and Metabolic Phenoreversion in Post-Acute-Phase Nonhospitalized COVID-19 Patients: Implications for Assessment of Post-Acute COVID-19 Syndrome. Journal of Proteome Research, 2021, 20, 3315-3329.	1.8	85
46	Constitutive Function of the Basic Helix-Loop-Helix/PAS Factor Arnt Journal of Biological Chemistry, 1995, 270, 13968-13972.	1.6	84
47	Systemic Perturbations in Amine and Kynurenine Metabolism Associated with Acute SARS-CoV-2 Infection and Inflammatory Cytokine Responses. Journal of Proteome Research, 2021, 20, 2796-2811.	1.8	81
48	Predominant Role of NF-κB p65 in the Pathogenesis of Chronic Intestinal Inflammation. Immunobiology, 1997, 198, 91-98.	0.8	80
49	Enterococcus faecalis from Healthy Infants Modulates Inflammation through MAPK Signaling Pathways. PLoS ONE, 2014, 9, e97523.	1.1	79
50	Salmonella typhimurium mutants that downregulate phagocyte nitric oxide production. Cellular Microbiology, 2000, 2, 239-250.	1.1	78
51	ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways. American Journal of Physiology - Renal Physiology, 2013, 304, G1025-G1037.	1.6	76
52	Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	75
53	Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity. Nature Microbiology, 2019, 4, 766-773.	5.9	72
54	Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity. Scientific Reports, 2016, 6, 23820.	1.6	66

#	Article	IF	CITATIONS
55	Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5â€mediated repression of Bâ€cellâ€specific genes. EMBO Reports, 2004, 5, 291-296.	2.0	58
56	Bacterial Regulation of Intestinal Immune Responses. Inflammatory Bowel Diseases, 2000, 6, 116-122.	0.9	53
57	Lipopolysaccharide-dependent transactivation of the temporally regulated immunoglobulin heavy chain 3′ enhancer. European Journal of Immunology, 1994, 24, 1671-1677.	1.6	52
58	PepT1 oligopeptide transporter (SLC15A1) gene polymorphism in inflammatory bowel disease. Inflammatory Bowel Diseases, 2009, 15, 1562-1569.	0.9	51
59	ASC-associated inflammation promotes cecal tumorigenesis in aryl hydrocarbon receptor-deficient mice. Carcinogenesis, 2013, 34, 1620-1627.	1.3	50
60	Host-microbiome interactions: the aryl hydrocarbon receptor and the central nervous system. Journal of Molecular Medicine, 2017, 95, 29-39.	1.7	48
61	The gut microbiota keeps enteric glial cells on the move; prospective roles of the gut epithelium and immune system. Gut Microbes, 2015, 6, 398-403.	4.3	45
62	Repression of the immunoglobulin heavy chain 3′ enhancer by helix-loop-helix protein Id3 via a functionally important E47/E12 binding site: implications for developmental control of enhancer function. European Journal of Immunology, 1995, 25, 1770-1777.	1.6	40
63	The Drosophila microbiome has a limited influence on sleep, activity, and courtship behaviors. Scientific Reports, 2018, 8, 10646.	1.6	39
64	B lymphocyte activation upon exclusive recognition of major histocompatibility antigens by T helper cells. European Journal of Immunology, 1984, 14, 222-227.	1.6	38
65	Manipulation of microbiota reveals altered callosal myelination and white matter plasticity in a model of Huntington disease. Neurobiology of Disease, 2019, 127, 65-75.	2.1	38
66	Helicobacter pylori infection can affect energy modulating hormones and body weight in germ free mice. Scientific Reports, 2015, 5, 8731.	1.6	37
67	Cellular selection leads to age-dependent and reversible down-regulation of transgenic immunoglobulin light chain genes. International Immunology, 1989, 1, 509-516.	1.8	36
68	The Salmonella YopJ-homologue AvrA does not possess YopJ-like activity. Microbial Pathogenesis, 2000, 28, 59-70.	1.3	35
69	The bacterial protein YopJ abrogates multiple signal transduction pathways that converge on the transcription factor CREB. Cellular Microbiology, 2000, 2, 231-238.	1.1	34
70	Absence of Intestinal PPARγ Aggravates Acute Infectious Colitis in Mice through a Lipocalin-2–Dependent Pathway. PLoS Pathogens, 2014, 10, e1003887.	2.1	34
71	Microbial Metabolites and Intestinal Stem Cells Tune Intestinal Homeostasis. Proteomics, 2020, 20, e1800419.	1.3	34
72	WAFL, a new protein involved in regulation of early endocytic transport at the intersection of actin and microtubule dynamics. Experimental Cell Research, 2009, 315, 1040-1052	1.2	32

#	Article	IF	CITATIONS
73	Persistent changes in liver methylation and microbiome composition following reversal of diet-induced non-alcoholic-fatty liver disease. Cellular and Molecular Life Sciences, 2019, 76, 4341-4354.	2.4	32
74	MHC restriction of male-antigen-specific T helper cells collaborating in antibody responses. Immunogenetics, 1982, 15, 129-138.	1.2	30
75	A constitutively active aryl hydrocarbon receptor causes loss of peritoneal B1 cells. Biochemical and Biophysical Research Communications, 2003, 302, 336-341.	1.0	27
76	A double-blind randomized placebo-controlled trial of probiotics in systemic sclerosis associated gastrointestinal disease. Seminars in Arthritis and Rheumatism, 2019, 49, 411-419.	1.6	27
77	Recombinant Adenovirus Vector Activates and Protects Human Monocyte-Derived Dendritic Cells from Apoptosis. Human Gene Therapy, 2002, 13, 1541-1549.	1.4	26
78	Abrogated lymphocyte infiltration and lowered CD14 in dextran sulfate induced colitis in mice treated with p65 antisense oligonucleotides. International Journal of Colorectal Disease, 2002, 17, 223-232.	1.0	26
79	Cysteinyl leukotriene 1 receptor influences intestinal polyp incidence in a gender-specific manner in the Apc ^{Min/+} mouse model. Carcinogenesis, 2016, 37, 491-499.	1.3	25
80	Immunoglobulin C gene expression. IV. Alternative control of IgG1-producing cells by helper cell-derived B cell-specific growth or maturation factors. European Journal of Immunology, 1983, 13, 269-272.	1.6	24
81	Distinct helper activities control growth or maturation of B lymphocytes. European Journal of Immunology, 1983, 13, 249-254.	1.6	23
82	Potential role for the common cystic fibrosis ΔF508 mutation in Crohn's disease. Inflammatory Bowel Diseases, 2007, 13, 531-536.	0.9	23
83	Impact of transcription factors AP-1 and NF-κB on the outcome of experimental Staphylococcus aureus arthritis and sepsis. Microbes and Infection, 2001, 3, 527-534.	1.0	22
84	The dioxin/aryl hydrocarbon receptor mediates downregulation of osteopontin gene expression in a mouse model of gastric tumourigenesis. Oncogene, 2005, 24, 3216-3222.	2.6	22
85	The human lα1 region contains a TGF–β1 responsive enhancer and a putative recombination hotspot. International Immunology, 1995, 7, 1191-1204.	1.8	21
86	Analysis of 39 Crohn's Disease Risk loci in Swedish Inflammatory Bowel Disease Patients. Inflammatory Bowel Diseases, 2010, 16, 907-909.	0.9	20
87	PPARG Binding Landscapes in Macrophages Suggest a Genome-Wide Contribution of PU.1 to Divergent PPARG Binding in Human and Mouse. PLoS ONE, 2012, 7, e48102.	1.1	20
88	An EphB-Abl signaling pathway is associated with intestinal tumor initiation and growth. Science Translational Medicine, 2015, 7, 281ra44.	5.8	18
89	Context-dependent Pax-5 repression of a PU.1/NF-κB regulated reporter gene in B lineage cells. Gene, 2001, 262, 107-114.	1.0	17
90	NFE, a new transcriptional activator that facilitates p50 and c-Rel-dependent IgH 3′ enhancer activity. European Journal of Immunology, 1997, 27, 468-475.	1.6	16

#	Article	IF	CITATIONS
91	The ulcerative colitis marker protein WAFL interacts with accessory proteins in endocytosis. International Journal of Biological Sciences, 2010, 6, 163-171.	2.6	16
92	Functional interaction of CARD15/NOD2 and Crohn's disease-associated TNFα polymorphisms. International Journal of Colorectal Disease, 2005, 20, 305-311.	1.0	15
93	DNA-dependent conversion of Oct-1 and Oct-2 into transcriptional repressors by Groucho/TLE. Nucleic Acids Research, 2005, 33, 4618-4625.	6.5	15
94	Physiological activation of the IgH 3′ enhancer in B lineage cells is not blocked by Pax-5. European Journal of Immunology, 1996, 26, 2499-2507.	1.6	14
95	<i>Helicobacter pylori</i> and gut microbiota modulate energy homeostasis prior to inducing histopathological changes in mice. Gut Microbes, 2016, 7, 48-53.	4.3	14
96	Gut microbes, ageing & organ function: a chameleon in modern biology?. EMBO Molecular Medicine, 2019, 11, e9872.	3.3	14
97	Comparing the genomes of Helicobacter pylori clinical strain UM032 and Mice-adapted derivatives. Gut Pathogens, 2013, 5, 25.	1.6	13
98	Regulated activity of the IgH intron enhancer (Eμ) in the T lymphocyte lineage. International Immunology, 1995, 7, 89-95.	1.8	11
99	Identification of a new WASP and FKBP-like (WAFL) protein in inflammatory bowel disease: a potential marker gene for ulcerative colitis. International Journal of Colorectal Disease, 2008, 23, 921-930.	1.0	11
100	The lymphoid-specific cofactor OBF-1 is essential for the expression of a VH promoter/HS1,2 enhancer-linked transgene in late B cell development. Molecular Immunology, 2000, 37, 889-899.	1.0	10
101	The long and winding road to gut homeostasis. Current Opinion in Gastroenterology, 2006, 22, 349-353.	1.0	10
102	Quantum changes in <i>Helicobacter pylori</i> gene expression accompany host-adaptation. DNA Research, 2017, 24, dsw046.	1.5	8
103	Ontogenic development of "natural―and induced plaque-forming cell isotypes in normal mice. European Journal of Immunology, 1985, 15, 1003-1007.	1.6	7
104	Mammalian watchdog targets bacteria. Nature, 2014, 512, 377-378.	13.7	7
105	Eph receptor interclass cooperation is required for the regulation of cell proliferation. Experimental Cell Research, 2016, 348, 10-22.	1.2	7
106	Reprint of: Manipulation of microbiota reveals altered callosal myelination and white matter plasticity in a model of Huntington disease. Neurobiology of Disease, 2020, 135, 104744.	2.1	7
107	Evaluation of novel control elements by construction of eukaryotic expression vectors. Gene, 1997, 188, 191-198.	1.0	6
108	Interference of eukaryotic signalling pathways by the bacteria Yersinia outer protein YopJ. Immunology Letters, 1999, 68, 199-203.	1.1	6

#	Article	IF	CITATIONS
109	Irritable bowel syndrome and risk of glaucoma: An analysis of two independent populationâ€based cohort studies. United European Gastroenterology Journal, 2021, 9, 1057-1065.	1.6	6
110	Novel Salmonella typhimurium properties in host–parasite interactions. Immunology Letters, 1999, 68, 247-249.	1.1	5
111	Probing Biomolecular Interactions of Glutathione Transferase M2-2 by using Peptide Phage Display. ChemBioChem, 2002, 3, 823-828.	1.3	4
112	Regional Diets Targeting Gut Microbial Dynamics to Support Prolonged Healthspan. Frontiers in Microbiology, 2021, 12, 659465.	1.5	4
113	ILSI Southeast Asia Region conference proceedings: The gut, its microbes and health: relevance for Asia. Asia Pacific Journal of Clinical Nutrition, 2017, 26, 957-971.	0.3	4
114	Aberrant regulation of the IgH 3′ enhancer by c-myc in plasmacytoma cells. Molecular Immunology, 1995, 32, 1369-1375.	1.0	3
115	Concomitant downregulation of IgH 3′ enhancer activity and c-myc expression in a plasmacytoma × fibroblast environment: Implications for dysregulation of translocated c-myc. Molecular Immunology, 1997, 34, 97-107.	1.0	3
116	When Cultures Meet: The Landscape of "Social―Interactions between the Host and Its Indigenous Microbes. BioEssays, 2019, 41, 1900002.	1.2	3
117	Clonal analysis of the specificity of alloreactive cells: ?Dominance? of E? reactive clones. Immunogenetics, 1982, 16, 559-569.	1.2	2
118	Su1088 A Novel Predictive Association Between Irritable Bowel Syndrome and Glaucomatous Optic Neuropathy. Gastroenterology, 2015, 148, S-404.	0.6	2
119	Temporal Control of IgH Gene Expression in Developing B Cells by the 3' Locus Control Region. Immunobiology, 1997, 198, 236-248.	0.8	1
120	Arthritis development in germ free mice deficient for reactive oxygen species. Annals of the Rheumatic Diseases, 2012, 71, A27.1-A27.	0.5	0