
Klemens Kaupmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1870311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature, 1998, 396, 683-687.	13.7	1,092
2	Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature, 1997, 386, 239-246.	13.7	953
3	Molecular Structure and Physiological Functions of GABAB Receptors. Physiological Reviews, 2004, 84, 835-867.	13.1	781
4	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein oupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	2.7	519
5	Epilepsy, Hyperalgesia, Impaired Memory, and Loss of Pre- and Postsynaptic GABAB Responses in Mice Lacking GABAB(1). Neuron, 2001, 31, 47-58.	3.8	489
6	Don't worry â€~B' happy!: a role for GABAB receptors in anxiety and depression. Trends in Pharmacological Sciences, 2005, 26, 36-43.	4.0	385
7	Nogo-A Inhibits Neurite Outgrowth and Cell Spreading with Three Discrete Regions. Journal of Neuroscience, 2003, 23, 5393-5406.	1.7	377
8	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	2.7	337
9	GABAB receptors – the first 7TM heterodimers. Trends in Pharmacological Sciences, 1999, 20, 396-399.	4.0	324
10	LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Human Molecular Genetics, 2011, 20, 4209-4223.	1.4	320
11	Genetic and Pharmacological Evidence of a Role for GABAB Receptors in the Modulation of Anxiety- and Antidepressant-Like Behavior. Neuropsychopharmacology, 2004, 29, 1050-1062.	2.8	314
12	C-Terminal Interaction Is Essential for Surface Trafficking But Not for Heteromeric Assembly of GABA _B Receptors. Journal of Neuroscience, 2001, 21, 1189-1202.	1.7	292
13	Differential Compartmentalization and Distinct Functions of GABAB Receptor Variants. Neuron, 2006, 50, 589-601.	3.8	289
14	Positive Allosteric Modulation of Native and Recombinant γ-Aminobutyric Acid _B Receptors by 2,6-Di- <i>tert</i> -butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its Aldehyde Analog CGP13501. Molecular Pharmacology, 2001, 60, 963-971.	1.0	245
15	Redistribution of GABAB(1) Protein and Atypical GABAB Responses in GABAB(2)-Deficient Mice. Journal of Neuroscience, 2004, 24, 6086-6097.	1.7	213
16	Behavioral Characterization of the Novel GABAB Receptor-Positive Modulator GS39783 (N,Nâ€2-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine): Anxiolytic-Like Activity without Side Effects Associated with Baclofen or Benzodiazepines. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 952-963.	1.3	203
17	Mutagenesis and Modeling of the GABAB Receptor Extracellular Domain Support a Venus Flytrap Mechanism for Ligand Binding. Journal of Biological Chemistry, 1999, 274, 13362-13369.	1.6	195
18	N,N′-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and Structurally Related Compounds: Novel Allosteric Enhancers of γ-Aminobutyric AcidB Receptor Function. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 322-330.	1.3	185

KLEMENS KAUPMANN

#	Article	IF	CITATIONS
19	γ-Hydroxybutyrate is a weak agonist at recombinant GABAB receptors. Neuropharmacology, 1999, 38, 1667-1673.	2.0	184
20	Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nature Neuroscience, 2006, 9, 1028-1035.	7.1	181
21	Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain. Journal of Comparative Neurology, 1999, 412, 1-16.	0.9	180
22	Metabotropic Glutamate 2/3 Receptors in the Ventral Tegmental Area and the Nucleus Accumbens Shell Are Involved in Behaviors Relating to Nicotine Dependence. Journal of Neuroscience, 2007, 27, 9077-9085.	1.7	177
23	Specific gamma-hydroxybutyrate-binding sites but loss of pharmacological effects of gamma-hydroxybutyrate in GABAB(1)-deficient mice. European Journal of Neuroscience, 2003, 18, 2722-2730.	1.2	175
24	Human Â-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14991-14996.	3.3	158
25	Molecular Pharmacology of Somatostatin-receptor Subtypes. Annals of the New York Academy of Sciences, 1994, 733, 138-146.	1.8	147
26	GABAB receptors: drugs meet clones. Current Opinion in Neurobiology, 1998, 8, 345-350.	2.0	147
27	Ca ²⁺ Requirement for High-Affinity γ-Aminobutyric Acid (GABA) Binding at GABA _B Receptors: Involvement of Serine 269 of the GABA _B R1 Subunit. Molecular Pharmacology, 2000, 57, 419-426.	1.0	137
28	Altered anxiety and depression-related behaviour in mice lacking GABAB(2) receptor subunits. NeuroReport, 2005, 16, 307-310.	0.6	127
29	Distribution and second messenger coupling of four somatostatin receptor subtypes expressed in brain. FEBS Letters, 1993, 331, 53-59.	1.3	109
30	The N-Terminal Domain of γ-Aminobutyric Acid _B Receptors Is Sufficient to Specify Agonist and Antagonist Binding. Molecular Pharmacology, 1999, 56, 448-454.	1.0	109
31	Wobbler, a mutation affecting motoneuron survival and gonadal functions in the mouse, maps to proximal chromosome 11. Genomics, 1992, 13, 39-43.	1.3	89
32	Developmental Changes of Agonist Affinity at GABABR1 Receptor Variants in Rat Brain. Molecular and Cellular Neurosciences, 1998, 12, 56-64.	1.0	87
33	Positive Modulation of GABA _B Receptors Decreased Nicotine Self-Administration and Counteracted Nicotine-Induced Enhancement of Brain Reward Function in Rats. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 306-314.	1.3	84
34	A Screen for Enhancers of Clearance Identifies Huntingtin as a Heat Shock Protein 90 (Hsp90) Client Protein. Journal of Biological Chemistry, 2012, 287, 1406-1414.	1.6	84
35	Alternative splicing generates a novel isoform of the rat metabotropic GABABR1 receptor. European Journal of Neuroscience, 1999, 11, 2874-2882.	1.2	78
36	Behavioral evaluation of mice deficient in GABAB(1) receptor isoforms in tests of unconditioned anxiety. Psychopharmacology, 2007, 190, 541-553.	1.5	70

KLEMENS KAUPMANN

#	Article	IF	CITATIONS
37	The heteromeric GABA-B receptor recognizes G-protein α subunit C-termini. Neuropharmacology, 1999, 38, 1657-1666.	2.0	63
38	Blocking Metabotropic Glutamate Receptor Subtype 7 (mGlu7) via the Venus Flytrap Domain (VFTD) Inhibits Amygdala Plasticity, Stress, and Anxiety-related Behavior. Journal of Biological Chemistry, 2014, 289, 10975-10987.	1.6	63
39	Reduction of Alcohol's Reinforcing and Motivational Properties by the Positive Allosteric Modulator of the GABA _B Receptor, BHF177, in Alcoholâ€Preferring Rats. Alcoholism: Clinical and Experimental Research, 2009, 33, 1749-1756.	1.4	62
40	Syntheses and optimization of new GS39783 analogues as positive allosteric modulators of GABAB receptors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6206-6211.	1.0	61
41	GABAB Receptor-Positive Modulation Decreases Selective Molecular and Behavioral Effects of Cocaine. Neuropsychopharmacology, 2007, 32, 388-398.	2.8	59
42	Independent maturation of the GABAB receptor subunits GABAB1 and GABAB2 during postnatal development in rodent brain. Journal of Comparative Neurology, 2004, 477, 235-252.	0.9	58
43	Point Mutations in the Transmembrane Region of GABAB2 Facilitate Activation by the Positive Modulator N,N′-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) in the Absence of the GABAB1 Subunit. Molecular Pharmacology, 2006, 70, 2027-2036.	1.0	57
44	Structural States of RORγt: Xâ€ray Elucidation of Molecular Mechanisms and Binding Interactions for Natural and Synthetic Compounds. ChemMedChem, 2017, 12, 1014-1021.	1.6	56
45	Hyperdopaminergia and altered locomotor activity in GABAB1-deficient mice. Journal of Neurochemistry, 2006, 97, 979-991.	2.1	54
46	Pharmacological inhibition of RORÎ ³ t suppresses the Th17 pathway and alleviates arthritis in vivo. PLoS ONE, 2017, 12, e0188391.	1.1	54
47	GABAB(1) Receptor Isoforms Differentially Mediate the Acquisition and Extinction of Aversive Taste Memories. Journal of Neuroscience, 2006, 26, 8800-8803.	1.7	53
48	GABAB Receptor-Positive Modulation-Induced Blockade of the Rewarding Properties of Nicotine Is Associated with a Reduction in Nucleus Accumbens ΔFosB Accumulation. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 172-177.	1.3	53
49	Mapping, genomic structure, and polymorphisms of the human GABA B R1 receptor gene: evaluation of its involvement in idiopathic generalized epilepsy. Neurogenetics, 1998, 2, 47-54.	0.7	52
50	Recognition molecule associated carbohydrate inhibits postsynaptic GABAB receptors: a mechanism for homeostatic regulation of GABA release in perisomatic synapses. Molecular and Cellular Neurosciences, 2003, 24, 271-282.	1.0	50
51	Structural basis of species-selective antagonist binding to the succinate receptor. Nature, 2019, 574, 581-585.	13.7	50
52	Specific roles of GABAB(1) receptor isoforms in cognition. Behavioural Brain Research, 2007, 181, 158-162.	1.2	49
53	The RXR-Type Endoplasmic Reticulum-Retention/Retrieval Signal of GABAB1 Requires Distant Spacing from the Membrane to Function. Molecular Pharmacology, 2005, 68, 137-144.	1.0	48
54	Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations. JCI Insight, 2017, 2, e91127.	2.3	46

#	Article	IF	CITATIONS
55	Altered response to benzodiazepine anxiolytics in mice lacking GABAB(1) receptors. European Journal of Pharmacology, 2004, 497, 119-120.	1.7	44
56	Roles of GABAB receptor subtypes in presynaptic auto- and heteroreceptor function regulating GABA and glutamate release. Journal of Neural Transmission, 2008, 115, 1401-1411.	1.4	44
57	The gene for the cell adhesion molecule m-cadherin maps to mouse chromosome 8 and human chromosome 16q24.1-qter and is near the e-cadherin (uvomorulin) locus in both species. Genomics, 1992, 14, 488-490.	1.3	38
58	Subtype-selective Interaction with the Transcription Factor CCAAT/Enhancer-binding Protein (C/EBP) Homologous Protein (CHOP) Regulates Cell Surface Expression of GABAB Receptors. Journal of Biological Chemistry, 2005, 280, 33566-33572.	1.6	34
59	The Sushi Domains of Secreted GABAB1 Isoforms Selectively Impair GABAB Heteroreceptor Function. Journal of Biological Chemistry, 2008, 283, 31005-31011.	1.6	34
60	Synthesis and Biological Evaluation of New Triazolo―and Imidazolopyridine RORγt Inverse Agonists. ChemMedChem, 2016, 11, 2640-2648.	1.6	26
61	Antagonizing Retinoic Acid-Related-Orphan Receptor Gamma Activity Blocks the T Helper 17/Interleukin-17 Pathway Leading to Attenuated Pro-inflammatory Human Keratinocyte and Skin Responses. Frontiers in Immunology, 2019, 10, 577.	2.2	26
62	Selected amino acids, dipeptides and arylalkylamine derivatives do not act as allosteric modulators at GABAB receptors. European Journal of Pharmacology, 2004, 483, 147-153.	1.7	25
63	Both GABAB receptor activation and blockade exacerbated anhedonic aspects of nicotine withdrawal in rats. European Journal of Pharmacology, 2011, 655, 52-58.	1.7	24
64	CABAB(1) Receptor Subunit Isoforms Exert a Differential Influence on Baseline but Not GABAB Receptor Agonist-Induced Changes in Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 1317-1326.	1.3	23
65	Optimizing a Weakly Binding Fragment into a Potent RORÎ ³ t Inverse Agonist with Efficacy in an in Vivo Inflammation Model. Journal of Medicinal Chemistry, 2018, 61, 6724-6735.	2.9	22
66	Ligands for the isolation of GABAB receptors W. Froestl would like to dedicate this work to the first GABAB chemist, Cr Heinrich Keberle, on the occasion of his 77th birthday Neuropharmacology, 1999, 38, 1641-1646.	2.0	20
67	Altered hippocampal expression of calbindin-D-28k and calretinin in GABAB(1)-deficient mice. Biochemical Pharmacology, 2004, 68, 1613-1620.	2.0	20
68	Chemical genetic approach identifies microtubule affinityâ€regulating kinase 1 as a leucineâ€rich repeat kinase 2 substrate. FASEB Journal, 2015, 29, 2980-2992.	0.2	19
69	Chromosomal Localization and Genomic Cloning of the Mouse α-Tropomyosin Gene Tpm-1. Genomics, 1993, 17, 519-521.	1.3	18
70	Ligands for expression cloning and isolation of GABAB receptors. Il Farmaco, 2003, 58, 173-183.	0.9	18
71	The Gene for Ciliary Neurotrophic Factor (CNTF) Maps to Murine Chromosome 19 and its Expression is Not Affected in the Hereditary Motoneuron Disease 'Wobbler' of the Mouse. European Journal of Neuroscience, 1991, 3, 1182-1186.	1.2	15
72	Determination of the minimal functional ligand-binding domain of the GABAB(1b) receptor. Biochemical Journal, 2005, 386, 423-431.	1.7	15

KLEMENS KAUPMANN

#	Article	IF	CITATIONS
73	Structure-Based and Property-Driven Optimization of <i>N</i> -Aryl Imidazoles toward Potent and Selective Oral RORÎ ³ t Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 10816-10832.	2.9	15
74	Discovery and Optimization of Novel SUCNR1 Inhibitors: Design of Zwitterionic Derivatives with a Salt Bridge for the Improvement of Oral Exposure. Journal of Medicinal Chemistry, 2020, 63, 9856-9875.	2.9	15
75	The mouse homolog to the ras-related yeast gene YPT1 maps on Chromosome 11 close to the wobbler (wr) locus. Mammalian Genome, 1992, 3, 467-468.	1.0	10
76	Exploring the mammalian neuromuscular system by analysis of mutations: Spinal muscular atrophy and myotonia. Progress in Neurobiology, 1994, 42, 313-317.	2.8	10
77	Differential roles of GABAB1 subunit isoforms on locomotor responses to acute and repeated administration of cocaine. Behavioural Brain Research, 2016, 298, 12-16.	1.2	10
78	Blunted 5-HT1A receptor-mediated responses and antidepressant-like behavior in mice lacking the GABAB1a but not GABAB1b subunit isoforms. Psychopharmacology, 2017, 234, 1511-1523.	1.5	9
79	Exploring subtype selectivity and metabolic stability of a novel series of ligands for the benzodiazepine binding site of the GABAA receptor. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1523-1526.	1.0	5
80	Ligands for expression cloning and isolation of GABAB receptors. Il Farmaco, 2001, 56, 101-105.	0.9	4
81	Heteromerization of GABA _B Receptors: A New Principle for G Proteinâ€Coupled Receptors. Satellite Symposium to the 28 th Annual Meeting of the Society for Neuroscience Los Angeles, CA, November 5–7, 1998. CNS Neuroscience & Therapeutics, 1998, 4, 376-379.	4.0	3
82	PET Imaging of T Cells: Target Identification and Feasibility Assessment. ChemMedChem, 2018, 13, 1566-1579.	1.6	1
83	Processing of GABABR1 in Heterologous Expression Systems. Annals of the New York Academy of Sciences, 1999, 868, 689-692.	1.8	0