Roger Cracknell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1870288/publications.pdf

Version: 2024-02-01

101496 118793 5,033 132 36 62 citations g-index h-index papers 134 134 134 3193 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Macroscopic spray characteristics of iso-octane, ethanol, gasoline and methanol from a multi-hole injector under flash boiling conditions. Fuel, 2022, 307, 121820.	3.4	18
2	Explicit Equations for Designing Surrogate Gasoline Formulations Containing Toluene, n-Heptane and Iso-pentane. Energy, Environment, and Sustainability, 2022, , 351-367.	0.6	0
3	Modified Particle Swarm Optimization With Chaotic Attraction Strategy for Modular Design of Hybrid Powertrains. IEEE Transactions on Transportation Electrification, 2021, 7, 616-625.	5.3	19
4	Accelerating Laminar Flame Speed of Hydrous Ethanol via Oxygen-Rich Combustion. Bioenergy Research, 2021, 14, 634-644.	2.2	2
5	THIP: A new TPRF-like fuel surrogate development approach to better match real fuel properties. Fuel, 2021, 286, 119395.	3.4	9
6	Zonal control for selective catalytic reduction system using a model-based multi-objective genetic algorithm. International Journal of Engine Research, 2021, 22, 911-920.	1.4	3
7	Experimental study of lubricant-derived ash effects on diesel particulate filter performance. International Journal of Engine Research, 2021, 22, 921-934.	1.4	9
8	Octane Index Applicability over the Pressure-Temperature Domain. Energies, 2021, 14, 607.	1.6	3
9	Experimental Investigation of the Rail Pressure Fluctuations Correlated with Fuel Properties and Injection Settings. Automotive Innovation, 2021, 4, 215-226.	3.1	4
10	Experimental study on sooting propensities of ternary blends of n-dodecane, isododecane, and C8 oxygenates at high pressures. Combustion and Flame, 2021, 231, 111469.	2.8	1
11	Evaluating a novel gasoline surrogate containing isopentane using a rapid compression machine and an engine. Proceedings of the Combustion Institute, 2021, 38, 5643-5653.	2.4	4
12	Transferable Representation Model Driven by Gaussion Process Regression for Real-time Energy Management of Plug-in Hybrid Vehicles. , 2021, , .		0
13	Experimental study on the combustion characteristics of high-pressure octanal spray flames. Fuel, 2020, 262, 116596.	3.4	4
14	Experimental study of the effect of C8 oxygenates on sooting processes in high pressure spray flames. Combustion and Flame, 2020, 220, 235-246.	2.8	8
15	A physics-based approach to modeling real-fuel combustion chemistry – VI. Predictive kinetic models of gasoline fuels. Combustion and Flame, 2020, 220, 475-487.	2.8	21
16	Explosion characteristics of hydrous bio-ethanol in oxygen-enriched air. Fuel, 2020, 271, 117604.	3.4	11
17	Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions. Applied Energy, 2020, 262, 114538.	5.1	23
18	Experimental investigation of ethanol/diesel dual-fuel combustion in a heavy-duty diesel engine. Fuel, 2020, 275, 117867.	3.4	60

#	Article	IF	CITATIONS
19	A chemical kinetic interpretation of the octane appetite of modern gasoline engines. Proceedings of the Combustion Institute, 2019, 37, 4857-4864.	2.4	12
20	An experimental investigation into combustion characteristics of HVO compared with TME and ULSD at varied blend ratios. Fuel, 2019, 255, 115757.	3.4	22
21	The effect of fuel composition on particulate emissions from a highly boosted GDI engine – An evaluation of three particulate indices. Fuel, 2019, 252, 598-611.	3.4	35
22	Methanol as an octane booster for gasoline fuels. Fuel, 2019, 248, 76-84.	3.4	47
23	Measurement of soot distribution in two cross-sections in a gasoline direct injection engine using laser-induced incandescence with the laser extinction method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233, 211-223.	1.1	2
24	Experimental and modelling study of the impacts of n-butanol blending on the auto-ignition behaviour of gasoline and its surrogate at low temperatures. Proceedings of the Combustion Institute, 2019, 37, 501-509.	2.4	21
25	The effect of oxygenate fuels on PN emissions from a highly boosted GDI engine. Fuel, 2018, 225, 277-286.	3.4	56
26	Investigation of injector coking effects on spray characteristic and engine performance in gasoline direct injection engines. Applied Energy, 2018, 220, 375-394.	5.1	25
27	The importance of endothermic pyrolysis reactions in the understanding of diesel spray combustion. Fuel, 2018, 224, 302-310.	3.4	13
28	Particulate emissions from a highly boosted gasoline direct injection engine. International Journal of Engine Research, 2018, 19, 347-359.	1.4	40
29	Laminar burning velocity measurements in constant volume vessels – Reconciliation of flame front imaging and pressure rise methods. Fuel, 2018, 211, 446-457.	3.4	38
30	Impact of Detailed Fuel Chemistry on Knocking Behaviour in Engines. , 2018, , 245-254.		3
31	Aqueous ethanol laminar burning velocity measurements using constant volume bomb methods. Fuel, 2018, 214, 127-134.	3.4	29
32	Recent Progress in Automotive Gasoline Direct Injection Engine Technology. Automotive Innovation, 2018, 1, 95-113.	3.1	50
33	Investigation of gasoline containing GTL naphtha in a spark ignition engine at full load conditions. Fuel, 2017, 194, 436-447.	3.4	8
34	Effect of flash boiling on microscopic and macroscopic spray characteristics in optical GDI engine. Fuel, 2017, 190, 79-89.	3.4	100
35	Splash blended ethanol in a spark ignition engine – Effect of RON, octane sensitivity and charge cooling. Fuel, 2017, 196, 21-31.	3.4	40
36	Sensitivity analysis of fuel types and operational parameters on the particulate matter emissions from an aviation piston engine burning heavy fuels. Fuel, 2017, 202, 520-528.	3.4	42

3

#	Article	IF	Citations
37	Combustion of ligaments and droplets expelled after the end of injection in a multi-hole diesel injector. Fuel, 2017, 197, 459-466.	3.4	18
38	Spatio-temporal evolution of diesel sprays at the early start of injection. Applied Energy, 2017, 205, 391-398.	5.1	17
39	Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends. Applied Energy, 2017, 206, 425-431.	5.1	127
40	Significance of RON and MON to a modern DISI engine. Fuel, 2017, 209, 172-183.	3.4	28
41	An experimental investigation on thermal efficiency of a compression ignition engine fueled with five gasoline-like fuels. Fuel, 2017, 207, 56-63.	3.4	22
42	Effect of fuel injector deposit on spray characteristics, gaseous emissions and particulate matter in a gasoline direct injection engine. Applied Energy, 2017, 203, 390-402.	5.1	67
43	Probing the antagonistic effect of toluene as a component in surrogate fuel models at low temperatures and high pressures. A case study of toluene/dimethyl ether mixtures. Proceedings of the Combustion Institute, 2017, 36, 413-421.	2.4	71
44	Engine Cleanliness in an Industry Standard Mercedes-Benz M111 Bench Engine: Effects of Inlet Valve Deposits on Combustion., 2017,,.		2
45	A Mathematical Model for the Vapour Composition and Flammability of Gasoline - Diesel Mixtures in a Fuel Tank., 2017,,.		2
46	Octane Requirement and Efficiency in a Fleet of Modern Vehicles. , 2017, , .		3
47	Influence of spark ignition in the determination of Markstein lengths using spherically expanding flames. Fuel, 2016, 186, 579-586.	3.4	12
48	Investigation of the Livengood–Wu integral for modelling autoignition in a high-pressure bomb. Combustion Theory and Modelling, 2016, 20, 77-98.	1.0	4
49	Experimental and modeling study of ultra-rich oxidation of n-heptane. Fuel, 2015, 144, 358-368.	3.4	28
50	Octane requirements of modern downsized boosted gasoline engines. MTZ Worldwide, 2015, 76, 4-7.	0.1	8
51	Transient characteristics of diesel sprays from a deposit rich injector. Fuel, 2015, 153, 183-191.	3.4	18
52	Computer Simulation Studies of Adsorption of Binary and Ternary Mixtures of Gasoline Components in Engine Deposits. SAE International Journal of Fuels and Lubricants, 2014, 7, 756-761.	0.2	4
53	Combustion and soot processes of diesel and rapeseed methyl ester in an optical diesel engine. Fuel, 2014, 118, 406-415.	3.4	29
54	Branched versus linear alkane adsorption in carbonaceous slit pores. Adsorption, 2014, 20, 427-437.	1.4	31

#	Article	IF	CITATIONS
55	Impact of fuel and injection system on particle emissions from a GDI engine. Applied Energy, 2014, 132, 178-191.	5.1	208
56	A study of liquid fuel injection and combustion in a constant volume vessel at diesel engine conditions. Fuel, 2013, 107, 63-73.	3.4	20
57	Heat flux characteristics of spray wall impingement with ethanol, butanol, iso-octane, gasoline and E10 fuels. International Journal of Heat and Fluid Flow, 2013, 44, 662-683.	1.1	40
58	Effects of injection parameters and EGR on exhaust soot particle number-size distribution for diesel and RME fuels in HSDI engines. Fuel, 2013, 112, 224-235.	3.4	38
59	Measurement of in-cylinder soot particles and their distribution in an optical HSDI diesel engine using time resolved laser induced incandescence (TR-LII). Combustion and Flame, 2012, 159, 2985-2998.	2.8	33
60	Shear viscosity of linear alkanes through molecular simulations: quantitative tests for <i>n</i> -decane and <i>n</i> -hexadecane. Molecular Simulation, 2012, 38, 1234-1241.	0.9	28
61	Adsorption-based Structural Characterization of Intake Valve Deposits., 2011,,.		8
62	A new method to simulate the octane appetite of any spark ignition engine , 2011, , .		12
63	Laminar burning velocity measurements of liquid fuels at elevated pressures and temperatures with combustion residuals. Combustion and Flame, 2011, 158, 1920-1932.	2.8	82
64	Towards predictive molecular simulations of normal and branched alkane adsorption in carbonaceous engine deposits. Carbon, 2011, 49, 445-456.	5 . 4	14
65	Combustion performance of bio-ethanol at various blend ratios in a gasoline direct injection engine. Fuel, 2011, 90, 1999-2006.	3.4	242
66	Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF. Combustion and Flame, 2010, 157, 1866-1878.	2.8	54
67	Cavitation, primary break-up and flash boiling of gasoline, iso-octane and n-pentane with a real-size optical direct-injection nozzle. Fuel, 2010, 89, 2592-2607.	3.4	129
68	Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and alcohols from a real-size optical injector for direct-injection spark-ignition engines. International Journal of Heat and Mass Transfer, 2010, 53, 4588-4606.	2.5	132
69	Mapping surrogate gasoline compositions into RON/MON space. Combustion and Flame, 2010, 157, 1122-1131.	2.8	231
70	High pressure laminar burning velocity measurements and modelling of methane and n-butane. Combustion Theory and Modelling, 2010, 14, 519-540.	1.0	25
71	Impact of Diesel Fuel Composition on Soot Oxidation Characteristics., 2009,,.		4
72	Performance, combustion and emissions of a diesel engine operated with reformed EGR. Comparison of diesel and GTL fuelling. Fuel, 2009, 88, 1031-1041.	3.4	92

#	Article	IF	CITATIONS
73	Combining GTL fuel, reformed EGR and HC-SCR aftertreatment system to reduce diesel NOx emissions. A statistical approach. International Journal of Hydrogen Energy, 2009, 34, 2789-2799.	3.8	48
74	The chemical origin of octane sensitivity in gasoline fuels containing nitroalkanes. Combustion and Flame, 2009, 156, 1046-1052.	2.8	27
75	Structural characterization of carbonaceous combustion-chamber deposits. Carbon, 2009, 47, 3322-3331.	5.4	10
76	Engine performance and emissions from the combustion of low-temperature Fischer Tropsch synthetic diesel fuel and biodiesel rapeseed methyl ester blends. International Journal of Vehicle Design, 2009, 50, 196.	0.1	15
77	GC-MS determination of low hydrocarbon species (C1–C6) from a diesel partial oxidation reformer. International Journal of Hydrogen Energy, 2008, 33, 7074-7083.	3.8	8
78	Multi-Component Quantitative PLIF: Robust Engineering Measurements of Cyclic Variation in a Firing Spray-Guided Gasoline Direct Injection Engine., 2008,,.		16
79	Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics. Combustion and Flame, 2007, 149, 2-24.	2.8	158
80	Effect of Gas-to-Liquid Diesel Fuels on Combustion Characteristics, Engine Emissions, and Exhaust Gas Fuel Reforming. Comparative Study. Energy & Study. 2006, 20, 2377-2384.	2.5	88
81	Effect of Sulphur and Silicon in Fuels on an Automotive Reforming Catalyst. , 2005, , .		1
82	Monte-Carlo Simulations of Centrifugal Gas Separation. Molecular Simulation, 2004, 30, 501-506.	0.9	8
83	Simulation of hydrogen adsorption in carbon nanotubes. Molecular Physics, 2002, 100, 2079-2086.	0.8	26
84	Molecular simulation of hydrogen adsorption in graphitic nanofibres. Physical Chemistry Chemical Physics, 2001, 3, 2091-2097.	1.3	118
85	Computer Simulation of Hydrogen Adsorption on Graphitic Materials. Molecular Simulation, 2001, 27, 287-293.	0.9	6
86	A Transition in the Diffusivity of Adsorbed Fluids through Micropores. Langmuir, 1996, 12, 4050-4052.	1.6	41
87	Adsorption and selectivity of carbon dioxide with methane and nitrogen in slit-shaped carbonaceous micropores: Simulation and experiment. Adsorption, 1996, 2, 193-203.	1.4	88
88	Molecular Selectivity in Slit Shaped Micropores. Kluwer International Series in Engineering and Computer Science, 1996, , 675-682.	0.2	2
89	Self Diffusion and Transport in Slit Shaped Pores. Kluwer International Series in Engineering and Computer Science, 1996, , 683-690.	0.2	6
90	Adsorption of gas mixtures on solid surfaces, theory and computer simulation. Adsorption, 1995, 1, 7-16.	1.4	47

#	Article	IF	Citations
91	Direct Molecular Dynamics Simulation of Flow Down a Chemical Potential Gradient in a Slit-Shaped Micropore. Physical Review Letters, 1995, 74, 2463-2466.	2.9	204
92	Modeling Fluid Behavior in Well-Characterized Porous Materials. Accounts of Chemical Research, 1995, 28, 281-288.	7.6	92
93	Molecular dynamics study of the self-diffusion of supercritical methane in slit-shaped graphitic micropores. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1377.	1.7	59
94	A Grand Canonical Monte-Carlo Study of Lennard-Jones Mixtures in Slit Pores; 2: Mixtures of Two Centre Ethane with Methane. Molecular Simulation, 1994, 13, 161-175.	0.9	58
95	On the Sampling Method for Grand Canonical Monte Carlo Simulations. Molecular Simulation, 1994, 13, 235-240.	0.9	0
96	Nitrogen Adsorption in Slit Pores at Ambient Temperatures: Comparison of Simulation and Experiment. Langmuir, 1994, 10, 4606-4609.	1.6	211
97	Grand canonical Monte Carlo study of Lennard-Jones mixtures in slit pores. Part 3.—Mixtures of two molecular fluids: ethane and propane. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1487-1493.	1.7	50
98	Molecular simulation of adsorption and diffusion in VPI 5 and other aluminophosphates. Langmuir, 1993, 9, 824-830.	1.6	53
99	A grand canonical Monte Carlo study of Lennard-Jones mixtures in slit shaped pores. Molecular Physics, 1993, 80, 885-897.	0.8	135
100	Molecular Simulation of Adsorption and Diffusion in Vpi-5 and other Aluminophosphates. Studies in Surface Science and Catalysis, 1993, 80, 105-112.	1.5	3
101	Interbilayer repulsion in nonionic surfactant-water lamellar phases Molecular Physics, 1992, 75, 1023-1038.	0.8	5
102	Interbilayer repulsion in nonionic surfactant-water lamellar phases Molecular Physics, 1992, 75, 1039-1045.	0.8	3
103	A Monte Carlo study of methane adsorption in aluminophosphates and porous carbons Journal of Molecular Liquids, 1992, 54, 239-251.	2.3	22
104	The fluidâ€"solid potential for a dynamic surface. Chemical Physics Letters, 1992, 196, 353-357.	1.2	1
105	Rotational insertion bias: a novel method for simulating dense phases of structured particles, with particular application to water. Molecular Physics, 1990, 71, 931-943.	0.8	104
106	Evaluation of a Model Potential Function for Ar Graphite Interaction using Computer Simulation. Molecular Simulation, 1990, 5, 307-314.	0.9	22
107	Designing Fuels Compatible with Reformers and Internal Combustion Engines. , 0, , .		15
108	Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion., 0,,.		41

#	Article	IF	Citations
109	Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion., 0,,.		31
110	Simulating Combustion of Practical Fuels and Blends for Modern Engine Applications Using Detailed Chemical Kinetics. , 0 , , .		14
111	Spray Characteristics Study of DMF Using Phase Doppler Particle Analyzer. SAE International Journal of Passenger Cars - Mechanical Systems, 0, 3, 948-958.	0.4	35
112	Impact of Fuel Properties on Advanced Combustion Performance in a Diesel Bench Engine and Demonstrator Vehicle. , 0, , .		36
113	Fuel Effects in a Boosted DISI Engine. , 0, , .		36
114	Influence of Laminar Burning Velocity on Performance of Gasoline Engines. , 0, , .		19
115	Understanding the Effect of DISI Injector Deposits on Vehicle Performance. , 0, , .		38
116	Modelling a Gasoline Compression Ignition (GCI) Engine Concept. , 0, , .		24
117	Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing. SAE International Journal of Engines, 0, 7, 387-417.	0.4	126
118	Octane Response in a Downsized, Highly Boosted Direct Injection Spark Ignition Engine. SAE International Journal of Fuels and Lubricants, 0, 7, 131-143.	0.2	26
119	Octane Appetite: The Relevance of a Lower Limit to the MON Specification in a Downsized, Highly Boosted DISI Engine. SAE International Journal of Fuels and Lubricants, 0, 7, 743-755.	0.2	39
120	Determination of Diesel Physical Properties at Injection Pressures and Temperatures via All-Atom Molecular Simulations. SAE International Journal of Fuels and Lubricants, 0, 9, 567-574.	0.2	5
121	Research on the Effect of Lubricant Oil and Fuel Properties on LSPI Occurrence in Boosted S. I. Engines. , 0, , .		30
122	Vapour Space Flammability Considerations for Gasoline Compression Ignition Vehicles Operating on "Dieseline―Blends SAE International Journal of Fuels and Lubricants, 0, 9, 593-602.	0.2	6
123	Understanding the Octane Appetite of Modern Vehicles. SAE International Journal of Fuels and Lubricants, 0, 9, 345-357.	0.2	21
124	Impact of Fuel Sensitivity (RON-MON) on Engine Efficiency. SAE International Journal of Fuels and Lubricants, 0, 10, 115-125.	0.2	25
125	Injector Fouling and Its Impact on Engine Emissions and Spray Characteristics in Gasoline Direct Injection Engines. SAE International Journal of Fuels and Lubricants, 0, 10, 287-295.	0.2	37
126	Octane Response of a Highly Boosted Direct Injection Spark Ignition Engine at Different Compression Ratios. , 0, , .		4

#	Article	IF	CITATIONS
127	Investigation of Late Stage Conventional Diesel Combustion - Effect of Additives. , 0, , .		2
128	A Parametric Study of the Flammability of Dieseline Blends with and without Ethanol., 0,,.		2
129	Mechanism Analysis on the Effect of Fuel Properties on Knocking Performance at Boosted Conditions. , 0, , .		11
130	Is the "K Value―of an Engine Truly Fuel Independent?. , 0, , .		4
131	Numerical Simulations of the Effect of Cold Fuel Temperature on In-Nozzle Flow and Cavitation Using a Model Injector Geometry. , 0, , .		1
132	Effects of Octane Number and Sensitivity on Combustion of Jet Ignition Engine. , 0, , .		1