
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1870202/publications.pdf Version: 2024-02-01

DANKALK SINCH

#	Article	IF	CITATIONS
1	The effect of gastric acid suppression on probiotic colonization in a double blinded randomized clinical trial. Clinical Nutrition ESPEN, 2022, 47, 70-77.	0.5	13
2	The cholesterol pathway: impact on immunity and cancer. Trends in Immunology, 2022, 43, 78-92.	2.9	47
3	CD73 induces GM-CSF/MDSC-mediated suppression of T cells to accelerate pancreatic cancer pathogenesis. Oncogene, 2022, 41, 971-982.	2.6	29
4	Visceral adipose tissue remodeling in pancreatic ductal adenocarcinoma cachexia: the role of activin A signaling. Scientific Reports, 2022, 12, 1659.	1.6	8
5	The human AP-endonuclease 1 (APE1) is a DNA C-quadruplex structure binding protein and regulates <i>KRAS</i> expression in pancreatic ductal adenocarcinoma cells. Nucleic Acids Research, 2022, 50, 3394-3412.	6.5	23
6	MnTE-2-PyP protects fibroblast mitochondria from hyperglycemia and radiation exposure. Redox Biology, 2022, 52, 102301.	3.9	6
7	Mitochondrial Calcium Uniporter Drives Metastasis and Confers a Targetable Cystine Dependency in Pancreatic Cancer. Cancer Research, 2022, 82, 2254-2268.	0.4	36
8	Targeting Keratin 17 in Pancreatic Cancer: A Novel Rewired Pathway of Nucleotide Metabolism that Drives Chemoresistance. FASEB Journal, 2022, 36, .	0.2	1
9	Temporal analysis of melanogenesis identifies fatty acid metabolism as key skin pigment regulator. PLoS Biology, 2022, 20, e3001634.	2.6	8
10	Exploring the metabolic landscape of pancreatic ductal adenocarcinoma cells using genome-scale metabolic modeling. IScience, 2022, 25, 104483.	1.9	4
11	MARK2 regulates chemotherapeutic responses through class IIa HDAC-YAP axis in pancreatic cancer. Oncogene, 2022, 41, 3859-3875.	2.6	6
12	How does fascin promote cancer metastasis?. FEBS Journal, 2021, 288, 1434-1446.	2.2	38
13	Molecular Subtypes of Pancreatic Cancer: A Proteomics Approach. Clinical Cancer Research, 2021, 27, 3272-3274.	3.2	3
14	Metabolic Rewiring by Loss of Sirt5 Promotes Kras-Induced Pancreatic Cancer Progression. Gastroenterology, 2021, 161, 1584-1600.	0.6	50
15	Metabolic and Immunological Subtypes of Esophageal Cancer Reveal Potential Therapeutic Opportunities. Frontiers in Cell and Developmental Biology, 2021, 9, 667852.	1.8	9
16	The FDA-Approved Anthelmintic Pyrvinium Pamoate Inhibits Pancreatic Cancer Cells in Nutrient-Depleted Conditions by Targeting the Mitochondria. Molecular Cancer Therapeutics, 2021, 20, 2166-2176.	1.9	19
17	Fascin promotes lung cancer growth and metastasis by enhancing glycolysis and PFKFB3 expression. Cancer Letters, 2021, 518, 230-242.	3.2	30
18	Listeria monocytogenes upregulates mitochondrial calcium signalling to inhibit LC3-associated phagocytosis as a survival strategy. Nature Microbiology, 2021, 6, 366-379.	5.9	33

#	Article	IF	CITATIONS
19	lgE-Based Therapeutic Combination Enhances Antitumor Response in Preclinical Models of Pancreatic Cancer. Molecular Cancer Therapeutics, 2021, 20, 2457-2468.	1.9	2
20	The central role of NADPH depletion in MnTE-2-PyP-induced prostate cancer cell growth inhibition. Advances in Redox Research, 2021, 3, 100025.	0.9	1
21	Metabolic Subtyping for Novel Personalized Therapies Against Pancreatic Cancer. Clinical Cancer Research, 2020, 26, 6-8.	3.2	28
22	Metabolic Alterations in Pancreatic Cancer Progression. Cancers, 2020, 12, 2.	1.7	38
23	Tuft Cells Inhibit Pancreatic Tumorigenesis in Mice by Producing Prostaglandin D2. Gastroenterology, 2020, 159, 1866-1881.e8.	0.6	45
24	JNK signaling contributes to skeletal muscle wasting and protein turnover in pancreatic cancer cacher cachexia. Cancer Letters, 2020, 491, 70-77.	3.2	27
25	SIRT1–NOX4 signaling axis regulates cancer cachexia. Journal of Experimental Medicine, 2020, 217, .	4.2	43
26	The Synergistic Effect of an ATP-Competitive Inhibitor of mTOR and Metformin on Pancreatic Tumor Growth. Current Developments in Nutrition, 2020, 4, nzaa131.	0.1	6
27	EHD1 and RUSC2 Control Basal Epidermal Growth Factor Receptor Cell Surface Expression and Recycling. Molecular and Cellular Biology, 2020, 40, .	1.1	8
28	Monocyte metabolic reprogramming promotes pro-inflammatory activity and Staphylococcus aureus biofilm clearance. PLoS Pathogens, 2020, 16, e1008354.	2.1	49
29	Local and systemic immunosuppression in pancreatic cancer: Targeting the stalwarts in tumor's arsenal. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188387.	3.3	19
30	MUC1 oncoprotein mitigates ER stress via CDA-mediated reprogramming of pyrimidine metabolism. Oncogene, 2020, 39, 3381-3395.	2.6	26
31	Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia. Cancer Letters, 2020, 484, 29-39.	3.2	39
32	p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas. Cell Reports, 2019, 28, 1860-1878.e9.	2.9	68
33	Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 2019, 5, 822-834.	3.8	273
34	The mitochondrial deoxyguanosine kinase is required for cancer cell stemness in lung adenocarcinoma. EMBO Molecular Medicine, 2019, 11, e10849.	3.3	26
35	Fascin Controls Metastatic Colonization and Mitochondrial Oxidative Phosphorylation by Remodeling Mitochondrial Actin Filaments. Cell Reports, 2019, 28, 2824-2836.e8.	2.9	54
36	Selective Inhibition of Histone Deacetylases 1/2/6 in Combination with Gemcitabine: A Promising Combination for Pancreatic Cancer Therapy. Cancers, 2019, 11, 1327.	1.7	27

#	Article	IF	CITATIONS
37	Pluronic block copolymers enhance the anti-myeloma activity of proteasome inhibitors. Journal of Controlled Release, 2019, 306, 149-164.	4.8	7
38	Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nature Medicine, 2019, 25, 628-640.	15.2	476
39	O-GlcNAc Transferase Suppresses Inflammation and Necroptosis by Targeting Receptor-Interacting Serine/Threonine-Protein Kinase 3. Immunity, 2019, 50, 576-590.e6.	6.6	111
40	Evaluating the Metabolic Alterations in Pancreatic Cancer. Methods in Molecular Biology, 2019, 1882, 221-228.	0.4	4
41	Molecular and Physiological Evaluation of Pancreatic Cancer-Induced Cachexia. Methods in Molecular Biology, 2019, 1882, 321-333.	0.4	4
42	RNA-Binding Protein HuR Regulates Both Mutant and Wild-Type IDH1 in IDH1-Mutated Cancer. Molecular Cancer Research, 2019, 17, 508-520.	1.5	17
43	Evaluating the Metabolic Impact of Hypoxia on Pancreatic Cancer Cells. Methods in Molecular Biology, 2018, 1742, 81-93.	0.4	0
44	Microscale Gene Expression Analysis of Tumor-Associated Macrophages. Scientific Reports, 2018, 8, 2408.	1.6	8
45	Hypoxia-Mediated In Vivo Tumor Glucose Uptake Measurement and Analysis. Methods in Molecular Biology, 2018, 1742, 107-113.	0.4	8
46	Evaluation of Macrophage Polarization in Pancreatic Cancer Microenvironment Under Hypoxia. Methods in Molecular Biology, 2018, 1742, 265-276.	0.4	19
47	Transcriptional Profiling Using RNA-Seq to Study Hypoxia-Mediated Gene Regulation. Methods in Molecular Biology, 2018, 1742, 55-66.	0.4	3
48	Hypoxia-Induced Metabolomic Alterations in Pancreatic Cancer Cells. Methods in Molecular Biology, 2018, 1742, 95-105.	0.4	12
49	Targeting Hypoxia-Inducible Factor-1α/Pyruvate Dehydrogenase Kinase 1 Axis by Dichloroacetate Suppresses Bleomycin-induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 216-231.	1.4	103
50	O-GlcNAc Transferase Links Glucose Metabolism to MAVS-Mediated Antiviral Innate Immunity. Cell Host and Microbe, 2018, 24, 791-803.e6.	5.1	81
51	Insights into gemcitabine resistance and the potential for therapeutic monitoring. Metabolomics, 2018, 14, 156.	1.4	25
52	Phosphoinositide 3-Kinase Signaling Pathway in Pancreatic Ductal Adenocarcinoma Progression, Pathogenesis, and Therapeutics. Frontiers in Physiology, 2018, 9, 335.	1.3	66
53	Combination of mAb-AR20.5, anti-PD-L1 and PolyICLC inhibits tumor progression and prolongs survival of MUC1.Tg mice challenged with pancreatic tumors. Cancer Immunology, Immunotherapy, 2018, 67, 445-457.	2.0	19
54	GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Cancer Letters, 2017, 400, 37-46.	3.2	76

#	Article	IF	CITATIONS
55	Combination Treatment with Orlistat-Containing Nanoparticles and Taxanes Is Synergistic and Enhances Microtubule Stability in Taxane-Resistant Prostate Cancer Cells. Molecular Cancer Therapeutics, 2017, 16, 1819-1830.	1.9	34
56	The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nature Communications, 2017, 8, 15503.	5.8	116
57	MUC1-Mediated Metabolic Alterations Regulate Response to Radiotherapy in Pancreatic Cancer. Clinical Cancer Research, 2017, 23, 5881-5891.	3.2	73
58	<i>De Novo</i> Lipid Synthesis Facilitates Gemcitabine Resistance through Endoplasmic Reticulum Stress in Pancreatic Cancer. Cancer Research, 2017, 77, 5503-5517.	0.4	143
59	Glucose Limitation Alters Glutamine Metabolism in MUC1-Overexpressing Pancreatic Cancer Cells. Journal of Proteome Research, 2017, 16, 3536-3546.	1.8	27
60	MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell, 2017, 32, 71-87.e7.	7.7	373
61	MUC1 facilitates metabolomic reprogramming in triple-negative breast cancer. PLoS ONE, 2017, 12, e0176820.	1.1	29
62	Racial disparity in metabolic regulation of cancer. Frontiers in Bioscience - Landmark, 2017, 22, 1221-1246.	3.0	5
63	Genomic alterations in mucins across cancers. Oncotarget, 2017, 8, 67152-67168.	0.8	37
64	EGFR-Targeted Polymeric Mixed Micelles Carrying Gemcitabine for Treating Pancreatic Cancer. Biomacromolecules, 2016, 17, 301-313.	2.6	41
65	Validation of Metabolic Alterations in Microscale Cell Culture Lysates Using Hydrophilic Interaction Liquid Chromatography (HILIC)-Tandem Mass Spectrometry-Based Metabolomics. PLoS ONE, 2016, 11, e0154416.	1.1	27
66	MUC16-mediated activation of mTOR and c-MYC reprograms pancreatic cancer metabolism. Oncotarget, 2015, 6, 19118-19131.	0.8	61
67	Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth. Oncotarget, 2015, 6, 41146-41161.	0.8	75
68	Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer & Metabolism, 2014, 2, 18.	2.4	182
69	MUC1: A novel metabolic master regulator. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 126-135.	3.3	64
70	MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13787-13792.	3.3	207
71	Graviola: A novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Letters, 2012, 323, 29-40.	3.2	139
72	Differential Expression of Metabolic Genes in Tumor and Stromal Components of Primary and Metastatic Loci in Pancreatic Adenocarcinoma. PLoS ONE, 2012, 7, e32996.	1.1	83

#	Article	IF	CITATIONS
73	MicroRNAs in pancreatic cancer metabolism. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 334-344.	8.2	51
74	Regulation of Aerobic Glycolysis by microRNAs in Cancer. Molecular and Cellular Pharmacology, 2011, 3, 125-134.	1.7	52
75	Phosphorylation of MUC1 by Met Modulates Interaction with p53 and MMP1 Expression. Journal of Biological Chemistry, 2008, 283, 26985-26995.	1.6	78
76	Platelet-Derived Growth Factor Receptor β–Mediated Phosphorylation of MUC1 Enhances Invasiveness in Pancreatic Adenocarcinoma Cells. Cancer Research, 2007, 67, 5201-5210.	0.4	105
77	Cell surface-associated mucins in signal transduction. Trends in Cell Biology, 2006, 16, 467-476.	3.6	367