Stéphanie Manel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1870002/publications.pdf

Version: 2024-02-01

70 papers

6,923 citations

172207 29 h-index 91712 69 g-index

76 all docs

76
docs citations

76 times ranked 8553 citing authors

#	Article	IF	Citations
1	Climate differently influences the genomic patterns of two sympatric marine fish species. Journal of Animal Ecology, 2022, 91, 1180-1195.	1.3	8
2	Adaptive potential of <i>Coffea canephora</i> from Uganda in response to climate change. Molecular Ecology, 2022, 31, 1800-1819.	2.0	7
3	Evaluating bioinformatics pipelines for populationâ€level inference using environmental DNA. Environmental DNA, 2022, 4, 674-686.	3.1	10
4	Identifying barriers to gene flow and hierarchical conservation units from seascape genomics: a modelling framework applied to a marine predator. Ecography, 2022, 2022, .	2.1	7
5	Genomic insights into the historical and contemporary demographics of the grey reef shark. Heredity, 2022, 128, 225-235.	1.2	8
6	Evolving spatial conservation prioritization with intraspecific genetic data. Trends in Ecology and Evolution, 2022, 37, 553-564.	4.2	21
7	Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220162.	1.2	14
8	Ecological and genomic vulnerability to climate change across native populations of Robusta coffee (<i>Coffea canephora</i>). Global Change Biology, 2022, 28, 4124-4142.	4.2	15
9	Ecological indicators based on quantitative eDNA metabarcoding: the case of marine reserves. Ecological Indicators, 2022, 140, 108966.	2.6	8
10	Applying convolutional neural networks to speed up environmental DNA annotation in a highly diverse ecosystem. Scientific Reports, 2022, 12, .	1.6	2
11	MetaPopGen 2.0: A multilocus genetic simulator to model populations of large size. Molecular Ecology Resources, 2021, 21, 596-608.	2.2	1
12	Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes. Environmental DNA, 2021, 3, 142-156.	3.1	61
13	Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass. Molecular Ecology Resources, 2021, 21, 849-870.	2.2	20
14	Detection of the elusive Dwarf sperm whale (<i>Kogia sima</i>) using environmental DNA at Malpelo island (Eastern Pacific, Colombia). Ecology and Evolution, 2021, 11, 2956-2962.	0.8	14
15	GAPeDNA: Assessing and mapping global species gaps in genetic databases for eDNA metabarcoding. Diversity and Distributions, 2021, 27, 1880-1892.	1.9	50
16	Environmental DNA metabarcoding reveals and unpacks a biodiversity conservation paradox in Mediterranean marine reserves. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210112.	1.2	28
17	Restricted dispersal in a sea of gene flow. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210458.	1.2	21
18	Maximizing regional biodiversity requires a mosaic of protection levels. PLoS Biology, 2021, 19, e3001195.	2.6	11

#	Article	IF	Citations
19	Reviewing the Ecosystem Services, Societal Goods, and Benefits of Marine Protected Areas. Frontiers in Marine Science, 2021, 8, .	1.2	27
20	Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification. Molecular Ecology Resources, 2021, 21, 2565-2579.	2.2	35
21	Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems. Environmental DNA, 2021, 3, 1113-1127.	3.1	38
22	Opportunities and challenges of macrogenetic studies. Nature Reviews Genetics, 2021, 22, 791-807.	7.7	55
23	Detecting aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica, 2021, 53, 1606-1619.	0.8	18
24	Species ecology explains the spatial components of genetic diversity in tropical reef fishes. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211574.	1.2	3
25	How many replicates to accurately estimate fish biodiversity using environmental DNA on coral reefs?. Ecology and Evolution, 2021, 11, 14630-14643.	0.8	28
26	Blind assessment of vertebrate taxonomic diversity across spatial scales by clustering environmental DNA metabarcoding sequences. Ecography, 2020, 43, 1779-1790.	2.1	37
27	Spatial graphs highlight how multiâ€generational dispersal shapes landscape genetic patterns. Ecography, 2020, 43, 1167-1179.	2.1	21
28	New genomic resources for three exploited Mediterranean fishes. Genomics, 2020, 112, 4297-4303.	1.3	8
29	Global determinants of freshwater and marine fish genetic diversity. Nature Communications, 2020, 11, 692.	5.8	97
30	Smoothing technical and computational obstacles in geneâ€environment associations. Molecular Ecology Resources, 2019, 19, 1385-1387.	2.2	0
31	Long-Distance Marine Connectivity: Poorly Understood but Potentially Important. Trends in Ecology and Evolution, 2019, 34, 688-689.	4.2	5
32	Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10418-10423.	3.3	308
33	Pleistocene climate changes, and not agricultural spread, accounts for range expansion and admixture in the dominant grassland speciesLolium perenneL Journal of Biogeography, 2019, 46, 1451.	1.4	26
34	Marine Conservation and Marine Protected Areas. Population Genomics, 2019, , 423-446.	0.2	15
35	Long-Distance Benefits of Marine Reserves: Myth or Reality?. Trends in Ecology and Evolution, 2019, 34, 342-354.	4.2	50
36	McSwan: A joint site frequency spectrum method to detect and date selective sweeps across multiple population genomes. Molecular Ecology Resources, 2019, 19, 283-295.	2.2	13

#	Article	IF	Citations
37	Biologically representative and wellâ€connected marine reserves enhance biodiversity persistence in conservation planning. Conservation Letters, 2018, 11, e12439.	2.8	91
38	Preserving genetic connectivity in the European Alps protected area network. Biological Conservation, 2018, 218, 99-109.	1.9	16
39	Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics, 2018, 19, 217.	1.2	44
40	Environmental DNA illuminates the dark diversity of sharks. Science Advances, 2018, 4, eaap9661.	4.7	222
41	Soil environment is a key driver of adaptation in <i>Medicago truncatula</i> landscape genomics. New Phytologist, 2018, 219, 378-390.	3 . 5	29
42	Predicting genotype environmental range from genome–environment associations. Molecular Ecology, 2018, 27, 2823-2833.	2.0	18
43	Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evolutionary Applications, 2018, 11, 1437-1447.	1.5	30
44	The interplay of riverscape features and exotic introgression on the genetic structure of the Mexican golden trout (<i>Oncorhynchus chrysogaster</i>), a simulation approach. Journal of Biogeography, 2018, 45, 1500-1514.	1.4	7
45	Combining Genotype, Phenotype, and Environment to Infer Potential Candidate Genes. Journal of Heredity, 2017, 108, esw077.	1.0	20
46	Developing educational resources for population genetics in R: an open and collaborative approach. Molecular Ecology Resources, 2017, 17, 120-128.	2.2	21
47	Global mismatch between fishing dependency and larval supply from marine reserves. Nature Communications, 2017, 8, 16039.	5. 8	40
48	Insights into the genetic relationships among plants of Beta section Beta using SNP markers. Theoretical and Applied Genetics, 2017, 130, 1857-1866.	1.8	32
49	Towards an integrated ecosystem of <scp>R</scp> packages for the analysis of population genetic data. Molecular Ecology Resources, 2017, 1-4.	2.2	13
50	Genetic variation of loci potentially under selection confounds species–genetic diversity correlations in a fragmented habitat. Molecular Ecology, 2017, 26, 431-443.	2.0	17
51	Genomic resources and their influence on the detection of the signal of positive selection in genome scans. Molecular Ecology, 2016, 25, 170-184.	2.0	74
52	Taxonomic, spatial and adaptive genetic variation of Beta section Beta. Theoretical and Applied Genetics, 2016, 129, 257-271.	1.8	27
53	Ecological traits shape genetic diversity patterns across the Mediterranean Sea: a quantitative review on fishes. Journal of Biogeography, 2016, 43, 845-857.	1.4	22
54	MetaPopGen: an <scp>r</scp> package to simulate population genetics in large size metapopulations. Molecular Ecology Resources, 2015, 15, 1153-1162.	2.2	12

#	Article	IF	Citations
55	Extending networks of protected areas to optimize connectivity and population growth rate. Ecography, 2015, 38, 273-282.	2.1	43
56	Reply to Kershaw and Rosenbaum. Trends in Ecology and Evolution, 2014, 29, 70-71.	4.2	0
57	Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Molecular Ecology, 2013, 22, 1383-1399.	2.0	334
58	Ten years of landscape genetics. Trends in Ecology and Evolution, 2013, 28, 614-621.	4.2	527
59	Low Connectivity between Mediterranean Marine Protected Areas: A Biophysical Modeling Approach for the Dusky Grouper Epinephelus marginatus. PLoS ONE, 2013, 8, e68564.	1.1	117
60	Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecology Letters, 2012, 15, 1439-1448.	3.0	135
61	Adaptive Genetic Variation on the Landscape: Methods and Cases. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 23-43.	3.8	250
62	Forecasting changes in population genetic structure of alpine plants in response to global warming. Molecular Ecology, 2012, 21, 2354-2368.	2.0	127
63	Broadâ€scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Molecular Ecology, 2012, 21, 3729-3738.	2.0	161
64	Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes. Landscape Ecology, 2012, 27, 267-279.	1.9	77
65	Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Molecular Ecology, 2010, 19, 3760-3772.	2.0	237
66	Landscape genetics of plants. Trends in Plant Science, 2010, 15, 675-683.	4.3	129
67	Land ahead: using genome scans to identify molecular markers of adaptive relevance. Plant Ecology and Diversity, 2008, 1, 273-283.	1.0	94
68	Assignment methods: matching biological questions with appropriate techniques. Trends in Ecology and Evolution, 2005, 20, 136-142.	4.2	645
69	Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology and Evolution, 2003, 18, 189-197.	4.2	1,907
70	Alternative methods for predicting species distribution: an illustration with Himalayan river birds. Journal of Applied Ecology, 1999, 36, 734-747.	1.9	254