
Andrew W Stoker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1869985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The cytotoxic action of BCI is not dependent on its stated DUSP1 or DUSP6 targets in neuroblastoma cells. FEBS Open Bio, 2022, , .	2.3	4
2	A Review of DUSP26: Structure, Regulation and Relevance in Human Disease. International Journal of Molecular Sciences, 2021, 22, 776.	4.1	12
3	Integrinâ€Targeted, Short Interfering RNA Nanocomplexes for Neuroblastoma Tumorâ€Specific Delivery Achieve <i>MYCN</i> Silencing with Improved Survival. Advanced Functional Materials, 2021, 31, 2104843.	14.9	12
4	Liposomal delivery of hydrophobic RAMBAs provides good bioavailability and significant enhancement of retinoic acid signalling in neuroblastoma tumour cells. Journal of Drug Targeting, 2020, 28, 643-654.	4.4	4
5	The liposomal delivery of hydrophobic oxidovanadium complexes imparts highly effective cytotoxicity and differentiating capacity in neuroblastoma tumour cells. Scientific Reports, 2020, 10, 16660.	3.3	7
6	<i>MYCN</i> Silencing by RNAi Induces Neurogenesis and Suppresses Proliferation in Models of Neuroblastoma with Resistance to Retinoic Acid. Nucleic Acid Therapeutics, 2020, 30, 237-248.	3.6	9
7	An FDA-Approved Drug Screen for Compounds Influencing Craniofacial Skeletal Development and Craniosynostosis. Molecular Syndromology, 2019, 10, 98-114.	0.8	11
8	P565â€Validation of novel growth-promoting and growth-suppressing genes in neuroblastoma cells. , 2019, , .		0
9	Vanadium Compounds as PTP Inhibitors. Molecules, 2017, 22, 2269.	3.8	74
10	588. MYCN Silencing Using RNA Interference Causes Apoptosis and Differentiation in MYCN Amplified Neuroblastoma Cell Lines. Molecular Therapy, 2016, 24, S233.	8.2	0
11	RPTPs and Cancer. , 2016, , 13-45.		1
12	Detection and Identification of Ligands for Mammalian RPTP Extracellular Domains. Methods in Molecular Biology, 2016, 1447, 267-281.	0.9	1
13	RPTPs in axons, synapses and neurology. Seminars in Cell and Developmental Biology, 2015, 37, 90-97.	5.0	23
14	Oxovanadium-based inhibitors can drive redox-sensitive cytotoxicity in neuroblastoma cells and synergise strongly with buthionine sulfoximine. Cancer Letters, 2015, 357, 316-327.	7.2	15
15	Structural basis for extracellular cis and trans RPTPÏ f signal competition in synaptogenesis. Nature Communications, 2014, 5, 5209.	12.8	67
16	Developmental coâ€expression and functional redundancy of tyrosine phosphatases with neurotrophin receptors in developing sensory neurons. International Journal of Developmental Neuroscience, 2014, 34, 48-59.	1.6	8
17	PTPs emerge as PIPs: protein tyrosine phosphatases with lipid-phosphatase activities in human disease. Human Molecular Genetics, 2013, 22, R66-R76.	2.9	31
18	Tyrosine phosphatase inhibitors combined with retinoic acid can enhance differentiation of neuroblastoma cells and trigger ERK- and AKT-dependent, p53-independent senescence. Cancer Letters, 2013, 328, 44-54.	7.2	33

ANDREW W STOKER

#	Article	IF	CITATIONS
19	Protein tyrosine phosphatases in health and disease. FEBS Journal, 2013, 280, 708-730.	4.7	139
20	Receptor tyrosine phosphatase PTPÎ ³ is a regulator of spinal cord neurogenesis. Molecular and Cellular Neurosciences, 2011, 46, 469-482.	2.2	11
21	PTPBR7 Binding Proteins in Myelinating Neurons of the Mouse Brain. International Journal of Biological Sciences, 2011, 7, 978-991.	6.4	5
22	The Role of Receptor Protein Tyrosine Phosphatases in Axonal Pathfinding. , 2010, , 1949-1954.		0
23	Protein tyrosine phosphatases: sequences and beyond. FEBS Journal, 2008, 275, 815-815.	4.7	4
24	Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS Journal, 2008, 275, 816-830.	4.7	64
25	Dimerization of Protein Tyrosine Phosphatase σ Governs both Ligand Binding and Isoform Specificity. Molecular and Cellular Biology, 2007, 27, 1795-1808.	2.3	35
26	PTPσ binds and dephosphorylates neurotrophin receptors and can suppress NGF-dependent neurite outgrowth from sensory neurons. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1689-1700.	4.1	38
27	Cell surface nucleolin on developing muscle is a potential ligand for the axonal receptor protein tyrosine phosphatase-Ïf. FEBS Journal, 2006, 273, 4668-4681.	4.7	30
28	PTPσ promotes retinal neurite outgrowth non-cell-autonomously. Journal of Neurobiology, 2005, 65, 59-71.	3.6	14
29	Protein tyrosine phosphatases and signalling. Journal of Endocrinology, 2005, 185, 19-33.	2.6	208
30	Receptor Tyrosine Phosphatases Guide Vertebrate Motor Axons during Development. Journal of Neuroscience, 2005, 25, 3813-3823.	3.6	77
31	Methods for identifying extracellular ligands of RPTPs. Methods, 2005, 35, 80-89.	3.8	12
32	Chick receptor tyrosine phosphatase \hat{I}^{\cdot} is dynamically expressed during somitogenesis. Gene Expression Patterns, 2003, 3, 325-329.	0.8	8
33	Isoform-specific binding of the tyrosine phosphatase ptpl̃ƒ to a ligand in developing muscle. Molecular and Cellular Neurosciences, 2003, 22, 37-48.	2.2	25
34	The Role of Receptor Protein Tyrosine Phosphatases in Axonal Pathfinding. , 2003, , 867-870.		0
35	Heparan Sulfate Proteoglycans Are Ligands for Receptor Protein Tyrosine Phosphatase σ. Molecular and Cellular Biology, 2002, 22, 1881-1892.	2.3	192
36	Chick PTPÏ, Regulates the Targeting of Retinal Axons within the Optic Tectum. Journal of Neuroscience, 2002, 22, 5024-5033.	3.6	34

ANDREW W STOKER

#	Article	IF	CITATIONS
37	Receptor protein tyrosine phosphatases regulate retinal ganglion cell axon outgrowth in the developingXenopus visual system. Journal of Neurobiology, 2001, 49, 99-117.	3.6	45
38	Receptor tyrosine phosphatases in axon growth and guidance. Current Opinion in Neurobiology, 2001, 11, 95-102.	4.2	63
39	Expression of Receptor Protein Tyrosine Phosphatases in Embryonic Chick Spinal Cord. Molecular and Cellular Neurosciences, 2000, 16, 470-480.	2.2	15
40	The Receptor Tyrosine Phosphatase Crypα Promotes Intraretinal Axon Growth. Journal of Cell Biology, 1999, 147, 375-388.	5.2	69
41	Expression of receptor tyrosine phosphatases during development of the retinotectal projection of the chick. , 1999, 39, 81-96.		48
42	Phosphotyrosine signalling as a regulator of neural crest cell adhesion and motility. Cytoskeleton, 1999, 42, 101-113.	4.4	13
43	Retinotectal Ligands for the Receptor Tyrosine Phosphatase CRYPα. Molecular and Cellular Neurosciences, 1999, 14, 225-240.	2.2	32
44	Protein tyrosine phosphatases and neural development. BioEssays, 1998, 20, 463-472.	2.5	72
45	The Expression of Receptor Tyrosine Phosphatases Is Responsive to Sciatic Nerve Crush. Molecular and Cellular Neurosciences, 1998, 12, 93-104.	2.2	26
46	Axon guidance: Motor-way madness. Current Biology, 1996, 6, 794-797.	3.9	5
47	Comparative localisation of CRYPα, a CAM-like tyrosine phosphatase, and NgCAM in the developing chick visual system. Developmental Brain Research, 1995, 90, 129-140.	1.7	21
48	Isoforms of a novel cell adhesion molecule-like protein tyrosine phosphatase are implicated in neural development. Mechanisms of Development, 1994, 46, 201-217.	1.7	44
49	Cloning of PCR products after defined cohesive termini are created with T4 DNA polymerase. Nucleic Acids Research, 1990, 18, 4290-4290.	14.5	35