Patrick M. Sexton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1869828/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nature Communications, 2022, 13, 92.	5.8	30
2	Secretin amino-terminal structure-activity relationships and complementary mutagenesis at the site of docking to the secretin receptor. Molecular Pharmacology, 2022, , MOLPHARM-AR-2022-000502.	1.0	0
3	A structural basis for amylin receptor phenotype. Science, 2022, 375, eabm9609.	6.0	28
4	Implications of ligand-receptor binding kinetics on GLP-1R signalling. Biochemical Pharmacology, 2022, 199, 114985.	2.0	5
5	Structural and functional diversity among agonist-bound states of the GLP-1 receptor. Nature Chemical Biology, 2022, 18, 256-263.	3.9	24
6	Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chemical Reviews, 2022, 122, 13989-14017.	23.0	17
7	Development of Novel 4â€Arylpyridinâ€2â€one and 6â€Arylpyrimidinâ€4â€one Positive Allosteric Modulators of 1 M 1 Muscarinic Acetylcholine Receptor. ChemMedChem, 2021, 16, 216-233.	:he 1.6	4
8	Pharmacological Insights Into Safety and Efficacy Determinants for the Development of Adenosine Receptor Biased Agonists in the Treatment of Heart Failure. Frontiers in Pharmacology, 2021, 12, 628060.	1.6	5
9	AM833 Is a Novel Agonist of Calcitonin Family G Protein–Coupled Receptors: Pharmacological Comparison with Six Selective and Nonselective Agonists. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 417-440.	1.3	27
10	Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science, 2021, 372, .	6.0	57
11	Roles of Cholecystokinin in the Nutritional Continuum. Physiology and Potential Therapeutics. Frontiers in Endocrinology, 2021, 12, 684656.	1.5	10
12	Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity. PLoS Biology, 2021, 19, e3001295.	2.6	41
13	Thermo Scientificâ"¢ Glacios Cryo-TEM: A Versatile 200 kV Tool for Structure-Based Drug Discovery. Microscopy and Microanalysis, 2021, 27, 3256-3258.	0.2	1
14	Structure and dynamics of semaglutide- and taspoglutide-bound GLP-1R-Gs complexes. Cell Reports, 2021, 36, 109374.	2.9	27
15	Routine sub-2.5 à cryo-EM structure determination of GPCRs. Nature Communications, 2021, 12, 4333.	5.8	37
16	Identification of a Novel Allosteric Site at the M5 Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2021, 12, 3112-3123.	1.7	6
17	Exploring Ligand Binding to Calcitonin Gene-Related Peptide Receptors. Frontiers in Molecular Biosciences, 2021, 8, 720561.	1.6	5
18	Evolving cryo-EM structural approaches for GPCR drug discovery. Structure, 2021, 29, 963-974.e6.	1.6	29

#	Article	IF	CITATIONS
19	Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature, 2021, 597, 571-576.	13.7	84
20	Insights into agonist-elicited activation of the human glucose-dependent insulinotropic polypeptide receptor. Biochemical Pharmacology, 2021, 192, 114715.	2.0	5
21	Cryo-EM structure of the dual incretin receptor agonist, peptide-19, in complex with the glucagon-like peptide-1 receptor. Biochemical and Biophysical Research Communications, 2021, 578, 84-90.	1.0	14
22	Cognitive behavioral markers of neurodevelopmental trajectories in rodents. Translational Psychiatry, 2021, 11, 556.	2.4	4
23	From structure to clinic: Design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer's disease. Cell, 2021, 184, 5886-5901.e22.	13.5	44
24	Deletion of GPR21 improves glucose homeostasis and inhibits the CCL2-CCR2 axis by divergent mechanisms. BMJ Open Diabetes Research and Care, 2021, 9, e002285.	1.2	6
25	Discovery of a Positive Allosteric Modulator of Cholecystokinin Action at CCK1R in Normal and Elevated Cholesterol. Frontiers in Endocrinology, 2021, 12, 789957.	1.5	3
26	Automatic local resolution-based sharpening of cryo-EM maps. Bioinformatics, 2020, 36, 765-772.	1.8	110
27	Activation of the GLP-1 receptor by a non-peptidic agonist. Nature, 2020, 577, 432-436.	13.7	119
28	Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Molecular Cell, 2020, 80, 485-500.e7.	4.5	111
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
30	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
32	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
33	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
38	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	Ο
40	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
41	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
42	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
43	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
44	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
45	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
46	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
47	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
48	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
49	Evaluation of biased agonism mediated by dual agonists of the GLP-1 and glucagon receptors. Biochemical Pharmacology, 2020, 180, 114150.	2.0	23
50	Restoring Agonist Function at a Chemogenetically Modified M ₁ Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2020, 11, 4270-4279.	1.7	1
51	Structure and dynamics of the active Gs-coupled human secretin receptor. Nature Communications, 2020, 11, 4137.	5.8	46
52	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
54	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0

#	Article	IF	CITATIONS
55	Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. Journal of Biological Chemistry, 2020, 295, 9313-9325.	1.6	31
56	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
58	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	Ο
60	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
61	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	Ο
62	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
63	Targeting Antibiotic Resistance: From Diagnostics to Novel Antibiotics. ACS Pharmacology and Translational Science, 2020, 3, 371-372.	2.5	3
64	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
65	Structural basis of G _s and G _i recognition by the human glucagon receptor. Science, 2020, 367, 1346-1352.	6.0	117
66	Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacology and Translational Science, 2020, 3, 246-262.	2.5	28
67	Structure and Dynamics of Adrenomedullin Receptors AM ₁ and AM ₂ Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins. ACS Pharmacology and Translational Science, 2020, 3, 263-284.	2.5	71
68	In the Loop: Extrastriatal Regulation of Spiny Projection Neurons by GPR52. ACS Chemical Neuroscience, 2020, 11, 2066-2076.	1.7	5
69	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	Ο
70	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
71	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
72	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0

#	Article	IF	CITATIONS
73	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
74	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
75	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
76	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
77	Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs. Nature Chemical Biology, 2020, 16, 240-249.	3.9	36
78	Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors. Molecular Cell, 2020, 77, 669-680.e4.	4.5	70
79	Toward a Structural Understanding of Class B GPCR Peptide Binding and Activation. Molecular Cell, 2020, 77, 656-668.e5.	4.5	92
80	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
81	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
82	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
83	Pharmacological characterization of mono-, dual- and tri-peptidic agonists at GIP and GLP-1 receptors. Biochemical Pharmacology, 2020, 177, 114001.	2.0	37
84	Rational development of a high-affinity secretin receptor antagonist. Biochemical Pharmacology, 2020, 177, 113929.	2.0	7
85	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
86	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
87	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
88	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
89	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
90	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0

#	Article	IF	CITATIONS
91	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
92	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
93	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
94	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
95	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
96	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
97	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	Ο
98	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
99	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
100	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
101	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
102	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
103	Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Frontiers in Pharmacology, 2020, 11, 606656.	1.6	30
104	O-GlcNAc Engineering of GPCR Peptide-Agonists Improves Their Stability and in Vivo Activity. Journal of the American Chemical Society, 2019, 141, 14210-14219.	6.6	35
105	Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic GPCRs. Nature Communications, 2019, 10, 3289.	5.8	47
106	Use of Backbone Modification To Enlarge the Spatiotemporal Diversity of Parathyroid Hormone Receptor-1 Signaling via Biased Agonism. Journal of the American Chemical Society, 2019, 141, 14486-14490.	6.6	23
107	Call for Papers: "Antibiotics―â^' A Joint Special Issue of ACS Pharmacology & Translational Science and ACS Infectious Diseases. ACS Pharmacology and Translational Science, 2019, 2, 217-217.	2.5	0
108	Molecular Basis of Action of a Small-Molecule Positive Allosteric Modulator Agonist at the Type 1 Cholecystokinin Holoreceptor. Molecular Pharmacology, 2019, 95, 245-259.	1.0	5

#	Article	IF	CITATIONS
109	Light-activated chimeric GPCRs: limitations and opportunities. Current Opinion in Structural Biology, 2019, 57, 196-203.	2.6	28
110	Deconvoluting the Molecular Control of Binding and Signaling at the Amylin 3 Receptor: RAMP3 Alters Signal Propagation through Extracellular Loops of the Calcitonin Receptor. ACS Pharmacology and Translational Science, 2019, 2, 183-197.	2.5	8
111	Expression and activity of the calcitonin receptor family in a sample of primary human high-grade gliomas. BMC Cancer, 2019, 19, 157.	1.1	15
112	<i>ACS Pharmacology & Translational Science</i> in 2019. ACS Pharmacology and Translational Science, 2019, 2, 1-1.	2.5	0
113	Crystal structure of the M ₅ muscarinic acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26001-26007.	3.3	48
114	6-Phenylpyrimidin-4-ones as Positive Allosteric Modulators at the M ₁ mAChR: The Determinants of Allosteric Activity. ACS Chemical Neuroscience, 2019, 10, 1099-1114.	1.7	7
115	The Molecular Control of Calcitonin Receptor Signaling. ACS Pharmacology and Translational Science, 2019, 2, 31-51.	2.5	38
116	Drug-receptor kinetics and sigma-1 receptor affinity differentiate clinically evaluated histamine H3 receptor antagonists. Neuropharmacology, 2019, 144, 244-255.	2.0	22
117	Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex. Nature, 2018, 555, 121-125.	13.7	263
118	Discovery and Optimization of Potent and CNS Penetrant M ₅ -Preferring Positive Allosteric Modulators Derived from a Novel, Chiral <i>N</i> -(Indanyl)piperidine Amide Scaffold. ACS Chemical Neuroscience, 2018, 9, 1572-1581.	1.7	13
119	Structure–Activity Relationships of Pan-Gα _{q/11} Coupled Muscarinic Acetylcholine Receptor Positive Allosteric Modulators. ACS Chemical Neuroscience, 2018, 9, 1818-1828.	1.7	7
120	Vascular and molecular pharmacology of the metabolically stable CGRP analogue, SAX. European Journal of Pharmacology, 2018, 829, 85-92.	1.7	15
121	Correspondence: Reply to †Compound 17b and formyl peptide receptor biased agonism in relation to cardioprotective effects in ischaemia-reperfusion injury'. Nature Communications, 2018, 9, 530.	5.8	6
122	Structure-based discovery of selective positive allosteric modulators of antagonists for the M ₂ muscarinic acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2419-E2428.	3.3	57
123	Muscarinic M5 receptors modulate ethanol seeking in rats. Neuropsychopharmacology, 2018, 43, 1510-1517.	2.8	33
124	To Bind or Not to Bind: Unravelling GPCR Polypharmacology. Cell, 2018, 172, 636-638.	13.5	20
125	Ramp. , 2018, , 4433-4438.		0
126	Characterization of signalling and regulation of common calcitonin receptor splice variants and polymorphisms. Biochemical Pharmacology, 2018, 148, 111-129.	2.0	19

#	Article	lF	CITATIONS
127	Two distinct domains of the glucagon-like peptide-1 receptor control peptide-mediated biased agonism. Journal of Biological Chemistry, 2018, 293, 9370-9387.	1.6	43
128	Bitopic Binding Mode of an M ₁ Muscarinic Acetylcholine Receptor Agonist Associated with Adverse Clinical Trial Outcomes. Molecular Pharmacology, 2018, 93, 645-656.	1.0	25
129	Divergent effects of strontium and calciumâ€sensing receptor positive allosteric modulators (calcimimetics) on human osteoclast activity. British Journal of Pharmacology, 2018, 175, 4095-4108.	2.7	29
130	Assessment of the Molecular Mechanisms of Action of Novel 4-Phenylpyridine-2-One and 6-Phenylpyrimidin-4-One Allosteric Modulators at the M ₁ Muscarinic Acetylcholine Receptors. Molecular Pharmacology, 2018, 94, 770-783.	1.0	10
131	Recent advances in the determination of G protein-coupled receptor structures. Current Opinion in Structural Biology, 2018, 51, 28-34.	2.6	51
132	Extracellular loops 2 and 3 of the calcitonin receptor selectively modify agonist binding and efficacy. Biochemical Pharmacology, 2018, 150, 214-244.	2.0	24
133	G Protein–Coupled Receptors Targeting Insulin Resistance, Obesity, and Type 2 Diabetes Mellitus. Pharmacological Reviews, 2018, 70, 39-67.	7.1	88
134	Utility of an "Allosteric Site-Impaired―M ₂ Muscarinic Acetylcholine Receptor as a Novel Construct for Validating Mechanisms of Action of Synthetic and Putative Endogenous Allosteric Modulators. Molecular Pharmacology, 2018, 94, 1298-1309.	1.0	3
135	Rules of Engagement: GPCRs and G Proteins. ACS Pharmacology and Translational Science, 2018, 1, 73-83.	2.5	93
136	Glucagon-like peptide-1 receptor internalisation controls spatiotemporal signalling mediated by biased agonists. Biochemical Pharmacology, 2018, 156, 406-419.	2.0	45
137	Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature, 2018, 561, 492-497.	13.7	210
138	Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. Journal of General Physiology, 2018, 150, 1360-1372.	0.9	38
139	Comparative genotypic and phenotypic analysis of human peripheral blood monocytes and surrogate monocyte-like cell lines commonly used in metabolic disease research. PLoS ONE, 2018, 13, e0197177.	1.1	29
140	Differential engagement of polar networks in the glucagon-like peptide 1 receptor by endogenous variants of the glucagon-like peptide 1. Biochemical Pharmacology, 2018, 156, 223-240.	2.0	6
141	Probing the binding site of novel selective positive allosteric modulators at the M1 muscarinic acetylcholine receptor. Biochemical Pharmacology, 2018, 154, 243-254.	2.0	19
142	Structural insights into G-protein-coupled receptor allostery. Nature, 2018, 559, 45-53.	13.7	255
143	DREADD Agonist 21 Is an Effective Agonist for Muscarinic-Based DREADDs <i>in Vitro</i> and <i>in Vivo</i> . ACS Pharmacology and Translational Science, 2018, 1, 61-72.	2.5	143
144	Dominant Negative G Proteins Enhance Formation and Purification of Agonist-GPCR-G Protein Complexes for Structure Determination. ACS Pharmacology and Translational Science, 2018, 1, 12-20.	2.5	96

#	Article	IF	CITATIONS
145	Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nature Reviews Molecular Cell Biology, 2018, 19, 638-653.	16.1	457
146	Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature, 2018, 558, 559-563.	13.7	274
147	Allostery and Biased Agonism at Class B G Protein-Coupled Receptors. Chemical Reviews, 2017, 117, 111-138.	23.0	91
148	What determines the magnitude of cellular response for activation of G protein-coupled receptors?. Cell Cycle, 2017, 16, 392-394.	1.3	0
149	Isoform-Specific Biased Agonism of Histamine H ₃ Receptor Agonists. Molecular Pharmacology, 2017, 91, 87-99.	1.0	21
150	Genetically encoded photocross-linkers determine the biological binding site of exendin-4 peptide in the N-terminal domain of the intact human glucagon-like peptide-1 receptor (GLP-1R). Journal of Biological Chemistry, 2017, 292, 7131-7144.	1.6	41
151	Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell, 2017, 168, 867-877.e13.	13.5	237
152	Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature, 2017, 546, 118-123.	13.7	424
153	Characterization of signal bias at the GLP-1 receptor induced by backbone modification of GLP-1. Biochemical Pharmacology, 2017, 136, 99-108.	2.0	53
154	Coexpressed Class B G Protein–Coupled Secretin and GLP-1 Receptors Self- and Cross-Associate: Impact on Pancreatic Islets. Endocrinology, 2017, 158, 1685-1700.	1.4	6
155	High throughput, quantitative analysis of human osteoclast differentiation and activity. Analytical Biochemistry, 2017, 519, 51-56.	1.1	7
156	Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nature Communications, 2017, 8, 14232.	5.8	104
157	A kinetic view of GPCR allostery and biased agonism. Nature Chemical Biology, 2017, 13, 929-937.	3.9	126
158	Coding GPCR-G protein specificity. Cell Research, 2017, 27, 1193-1194.	5.7	8
159	Structural features embedded in G protein-coupled receptor co-crystal structures are key to their success in virtual screening. PLoS ONE, 2017, 12, e0174719.	1.1	11
160	Improving virtual screening of G protein-coupled receptors via ligand-directed modeling. PLoS Computational Biology, 2017, 13, e1005819.	1.5	8
161	Extracellular Loop 2 of the Adenosine A1 Receptor Has a Key Role in Orthosteric Ligand Affinity and Agonist Efficacy. Molecular Pharmacology, 2016, 90, 703-714.	1.0	53
162	Role of the Second Extracellular Loop of the Adenosine A ₁ Receptor on Allosteric Modulator Binding, Signaling, and Cooperativity. Molecular Pharmacology, 2016, 90, 715-725.	1.0	56

#	Article	IF	CITATIONS
163	Monotreme glucagon-like peptide-1 in venom and gut: one gene – two very different functions. Scientific Reports, 2016, 6, 37744.	1.6	12
164	An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology. Cell Discovery, 2016, 2, 16012.	3.1	44
165	Novel Irreversible Agonists Acting at the A ₁ Adenosine Receptor. Journal of Medicinal Chemistry, 2016, 59, 11182-11194.	2.9	20
166	Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5675-84.	3.3	82
167	The complexity of signalling mediated by the glucagon-like peptide-1 receptor. Biochemical Society Transactions, 2016, 44, 582-588.	1.6	28
168	Ligand-Dependent Modulation of G Protein Conformation Alters Drug Efficacy. Cell, 2016, 167, 739-749.e11.	13.5	113
169	Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor. Biochemical Pharmacology, 2016, 118, 68-87.	2.0	41
170	Molecular Mechanisms of Action of M ₅ Muscarinic Acetylcholine Receptor Allosteric Modulators. Molecular Pharmacology, 2016, 90, 427-436.	1.0	24
171	Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes. Pharmacological Reviews, 2016, 68, 954-1013.	7.1	252
172	β-Arrestin-Biased Agonists of the GLP-1 Receptor from β-Amino Acid Residue Incorporation into GLP-1 Analogues. Journal of the American Chemical Society, 2016, 138, 14970-14979.	6.6	69
173	The role of kinetic context in apparent biased agonism at GPCRs. Nature Communications, 2016, 7, 10842.	5.8	270
174	Positive Allosteric Modulation of the Muscarinic M ₁ Receptor Improves Efficacy of Antipsychotics in Mouse Glutamatergic Deficit Models of Behavior. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 354-365.	1.3	21
175	The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism. Cell, 2016, 165, 1632-1643.	13.5	126
176	Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor. Biochemical Pharmacology, 2016, 113, 70-87.	2.0	48
177	Use of Cysteine Trapping to Map Spatial Approximations between Residues Contributing to the Helix N-capping Motif of Secretin and Distinct Residues within Each of the Extracellular Loops of Its Receptor. Journal of Biological Chemistry, 2016, 291, 5172-5184.	1.6	9
178	Prediction of Loops in G Protein-Coupled Receptor Homology Models: Effect of Imprecise Surroundings and Constraints. Journal of Chemical Information and Modeling, 2016, 56, 671-686.	2.5	7
179	Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor. Cell Research, 2016, 26, 574-592.	5.7	85
180	Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 2016, 531, 335-340.	13.7	272

#	Article	IF	CITATIONS
181	4-Phenylpyridin-2-one Derivatives: A Novel Class of Positive Allosteric Modulator of the M ₁ Muscarinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 2016, 59, 388-409.	2.9	35
182	A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures. Molecular Pharmacology, 2016, 89, 335-347.	1.0	56
183	Quantification of adenosine A 1 receptor biased agonism: Implications for drug discovery. Biochemical Pharmacology, 2016, 99, 101-112.	2.0	58
184	Calcitonin. , 2016, , 1004-1017.e5.		3
185	M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. Journal of Clinical Investigation, 2016, 127, 487-499.	3.9	56
186	Murine GPRC6A Mediates Cellular Responses to L-Amino Acids, but Not Osteocalcin Variants. PLoS ONE, 2016, 11, e0146846.	1.1	42
187	Ramp. , 2016, , 1-5.		0
188	Biased allosteric modulation at the <scp>CaS</scp> receptor engendered by structurally diverse calcimimetics. British Journal of Pharmacology, 2015, 172, 185-200.	2.7	71
189	Development of a Highly Selective Allosteric Antagonist Radioligand for the Type 1 Cholecystokinin Receptor and Elucidation of Its Molecular Basis of Binding. Molecular Pharmacology, 2015, 87, 130-140.	1.0	10
190	Molecular Mechanism of Action of Triazolobenzodiazepinone Agonists of the Type 1 Cholecystokinin Receptor. Possible Cooperativity across the Receptor Homodimeric Complex. Journal of Medicinal Chemistry, 2015, 58, 9562-9577.	2.9	15
191	Towards tissue-specific pharmacology: insights from the calcium-sensing receptor as a paradigm for GPCR (patho)physiological bias. Trends in Pharmacological Sciences, 2015, 36, 215-225.	4.0	41
192	Biased Agonism and Biased Allosteric Modulation at the CB ₁ Cannabinoid Receptor. Molecular Pharmacology, 2015, 88, 368-379.	1.0	118
193	Novel Allosteric Modulators of G Protein-coupled Receptors. Journal of Biological Chemistry, 2015, 290, 19478-19488.	1.6	173
194	Detection and Quantification of Allosteric Modulation of Endogenous M4 Muscarinic Acetylcholine Receptor Using Impedance-Based Label-Free Technology in a Neuronal Cell Line. Journal of Biomolecular Screening, 2015, 20, 646-654.	2.6	8
195	Synthesis and Pharmacological Evaluation of M ₄ Muscarinic Receptor Positive Allosteric Modulators Derived from VU10004. ACS Chemical Neuroscience, 2015, 6, 838-844.	1.7	16
196	GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1–2 September 2014. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 883-903.	1.4	34
197	Differential Impact of Amino Acid Substitutions on Critical Residues of the Human Glucagon-Like Peptide-1 Receptor Involved in Peptide Activity and Small-Molecule Allostery. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 52-63.	1.3	18
198	Endogenous Allosteric Modulators of G Protein–Coupled Receptors. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 246-260.	1.3	127

#	Article	IF	CITATIONS
199	A structure–activity relationship study of the positive allosteric modulator LY2033298 at the M ₄ muscarinic acetylcholine receptor. MedChemComm, 2015, 6, 1998-2003.	3.5	7
200	Biased Agonism of Endogenous Opioid Peptides at the <i>μ</i> -Opioid Receptor. Molecular Pharmacology, 2015, 88, 335-346.	1.0	93
201	Label-Free Kinetics: Exploiting Functional Hemi-Equilibrium to Derive Rate Constants for Muscarinic Receptor Antagonists. Molecular Pharmacology, 2015, 88, 779-790.	1.0	17
202	Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4614-4619.	3.3	92
203	Engendering biased signalling from the calciumâ€sensing receptor for the pharmacotherapy of diverse disorders. British Journal of Pharmacology, 2014, 171, 1142-1155.	2.7	37
204	Mechanistic Insights into Allosteric Structure-Function Relationships at the M1 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2014, 289, 33701-33711.	1.6	49
205	Molecular Mechanisms of Bitopic Ligand Engagement with the M1 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2014, 289, 23817-23837.	1.6	55
206	Structural and functional insights into the juxtamembranous aminoâ€ŧerminal tail and extracellular loop regions of class <scp>B GPCRs</scp> . British Journal of Pharmacology, 2014, 171, 1085-1101.	2.7	25
207	Molecular Determinants of Allosteric Modulation at the M1 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2014, 289, 6067-6079.	1.6	51
208	Synthesis and Pharmacological Evaluation of Analogues of Benzyl Quinolone Carboxylic Acid (BQCA) Designed to Bind Irreversibly to an Allosteric Site of the M1Muscarinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 2014, 57, 5405-5418.	2.9	27
209	A new mechanism of allostery in a G protein–coupled receptor dimer. Nature Chemical Biology, 2014, 10, 745-752.	3.9	108
210	A Nuclear Transport Inhibitor That Modulates the Unfolded Protein Response and Provides In Vivo Protection Against Lethal Dengue virus Infection. Journal of Infectious Diseases, 2014, 210, 1780-1791.	1.9	84
211	International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands. Pharmacological Reviews, 2014, 66, 918-947.	7.1	189
212	Allosteric Modulation of M1 Muscarinic Acetylcholine Receptor Internalization and Subcellular Trafficking. Journal of Biological Chemistry, 2014, 289, 15856-15866.	1.6	31
213	Development of a Photoactivatable Allosteric Ligand for the M ₁ Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2014, 5, 902-907.	1.7	9
214	Structural Basis for Modulation of a GPCR by Allosteric Drugs. Biophysical Journal, 2014, 106, 100a.	0.2	0
215	Muscarinic acetylcholine receptors: novel opportunities for drug development. Nature Reviews Drug Discovery, 2014, 13, 549-560.	21.5	337
216	Prolonged Calcitonin Receptor Signaling by Salmon, but Not Human Calcitonin, Reveals Ligand Bias. PLoS ONE, 2014, 9, e92042.	1.1	60

#	Article	IF	CITATIONS
217	Emerging paradigms in GPCR allostery: implications for drug discovery. Nature Reviews Drug Discovery, 2013, 12, 630-644.	21.5	396
218	Meet the B family. Nature, 2013, 499, 417-418.	13.7	5
219	Molecular Basis for Benzodiazepine Agonist Action at the Type 1 Cholecystokinin Receptor. Journal of Biological Chemistry, 2013, 288, 21082-21095.	1.6	19
220	Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature, 2013, 503, 295-299.	13.7	365
221	Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 2013, 504, 101-106.	13.7	779
222	Probing Structural Requirements of Positive Allosteric Modulators of the M ₄ Muscarinic Receptor. Journal of Medicinal Chemistry, 2013, 56, 8196-8200.	2.9	20
223	Reverse Engineering of the Selective Agonist TBPB Unveils Both Orthosteric and Allosteric Modes of Action at the M1 Muscarinic Acetylcholine Receptor. Molecular Pharmacology, 2013, 84, 425-437.	1.0	31
224	Allosteric Modulation of a Chemogenetically Modified G Protein-Coupled Receptor. Molecular Pharmacology, 2013, 83, 521-530.	1.0	24
225	Recent advances in understanding GLP-1R (glucagon-like peptide-1 receptor) function. Biochemical Society Transactions, 2013, 41, 172-179.	1.6	59
226	Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends in Pharmacological Sciences, 2013, 34, 59-66.	4.0	150
227	Synthesis and Pharmacological Profiling of Analogues of Benzyl Quinolone Carboxylic Acid (BQCA) as Allosteric Modulators of the M ₁ Muscarinic Receptor. Journal of Medicinal Chemistry, 2013, 56, 5151-5172.	2.9	53
228	Differential Activation and Modulation of the Glucagon-Like Peptide-1 Receptor by Small Molecule Ligands. Molecular Pharmacology, 2013, 83, 822-834.	1.0	77
229	Impact of Clinically Relevant Mutations on the Pharmacoregulation and Signaling Bias of the Calcium-Sensing Receptor by Positive and Negative Allosteric Modulators. Endocrinology, 2013, 154, 1105-1116.	1.4	68
230	Minireview: Signal Bias, Allosterism, and Polymorphic Variation at the GLP-1R: Implications for Drug Discovery. Molecular Endocrinology, 2013, 27, 1234-1244.	3.7	30
231	Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B C protein-coupled receptor conformations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5211-5216.	3.3	203
232	CGRP/Adrenomedullin. , 2013, , 744-751.		0
233	A simple method to generate stable cell lines for the analysis of transient protein-protein interactions. BioTechniques, 2013, 54, 217-221.	0.8	16
234	Probe Dependence in the Allosteric Modulation of a G Protein-Coupled Receptor: Implications for Detection and Validation of Allosteric Ligand Effects. Molecular Pharmacology, 2012, 81, 41-52.	1.0	115

#	Article	IF	CITATIONS
235	Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18607-18612.	3.3	62
236	Stimulus Bias Provides Evidence for Conformational Constraints in the Structure of a G Protein-coupled Receptor. Journal of Biological Chemistry, 2012, 287, 37066-37077.	1.6	28
237	Mapping spatial approximations between the amino terminus of secretin and each of the extracellular loops of its receptor using cysteine trapping. FASEB Journal, 2012, 26, 5092-5105.	0.2	35
238	Identification of Molecular Phenotypes and Biased Signaling Induced by Naturally Occurring Mutations of the Human Calcium-Sensing Receptor. Endocrinology, 2012, 153, 4304-4316.	1.4	72
239	Molecular Basis for Binding and Subtype Selectivity of 1,4-Benzodiazepine Antagonist Ligands of the Cholecystokinin Receptor. Journal of Biological Chemistry, 2012, 287, 18618-18635.	1.6	23
240	Small Molecule Allosteric Modulation of the Glucagon-Like Peptide-1 Receptor Enhances the Insulinotropic Effect of Oxyntomodulin. Molecular Pharmacology, 2012, 82, 1066-1073.	1.0	51
241	Synthesis and Characterization of Novel 2-Amino-3-benzoylthiophene Derivatives as Biased Allosteric Agonists and Modulators of the Adenosine A ₁ Receptor. Journal of Medicinal Chemistry, 2012, 55, 2367-2375.	2.9	53
242	Mapping Interactions Between the Amino-Terminal Region of Secretin and its Receptor using Disulfide-Trapping. Biophysical Journal, 2012, 102, 515a.	0.2	0
243	Second Extracellular Loop of Human Glucagon-like Peptide-1 Receptor (GLP-1R) Differentially Regulates Orthosteric but Not Allosteric Agonist Binding and Function. Journal of Biological Chemistry, 2012, 287, 3659-3673.	1.6	30
244	Second Extracellular Loop of Human Glucagon-like Peptide-1 Receptor (GLP-1R) Has a Critical Role in GLP-1 Peptide Binding and Receptor Activation. Journal of Biological Chemistry, 2012, 287, 3642-3658.	1.6	83
245	Consequences of splice variation on Secretin family G protein oupled receptor function. British Journal of Pharmacology, 2012, 166, 98-109.	2.7	44
246	Structure–Function Studies of Muscarinic Acetylcholine Receptors. Handbook of Experimental Pharmacology, 2012, , 29-48.	0.9	16
247	The Best of Both Worlds? Bitopic Orthosteric/Allosteric Ligands of G Protein–Coupled Receptors. Annual Review of Pharmacology and Toxicology, 2012, 52, 153-178.	4.2	148
248	Positive and Negative Allosteric Modulators Promote Biased Signaling at the Calcium-Sensing Receptor. Endocrinology, 2012, 153, 1232-1241.	1.4	142
249	A Monod-Wyman-Changeux Mechanism Can Explain G Protein-coupled Receptor (GPCR) Allosteric Modulation. Journal of Biological Chemistry, 2012, 287, 650-659.	1.6	98
250	Allosteric Modulation of Endogenous Metabolites as an Avenue for Drug Discovery. Molecular Pharmacology, 2012, 82, 281-290.	1.0	69
251	RAMPs as Drug Targets. Advances in Experimental Medicine and Biology, 2012, 744, 61-74.	0.8	10
252	Refinement of Glucagon-like Peptide 1 Docking to Its Intact Receptor Using Mid-region Photolabile Probes and Molecular Modeling. Journal of Biological Chemistry, 2011, 286, 15895-15907.	1.6	49

#	Article	IF	CITATIONS
253	Modulation of the Glucagon-Like Peptide-1 Receptor Signaling by Naturally Occurring and Synthetic Flavonoids. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 540-550.	1.3	67
254	Polymorphism and Ligand Dependent Changes in Human Glucagon-Like Peptide-1 Receptor (GLP-1R) Function: Allosteric Rescue of Loss of Function Mutation. Molecular Pharmacology, 2011, 80, 486-497.	1.0	84
255	Structure–function analysis of amino acid 74 of human RAMP1 and RAMP3 and its role in peptide interactions with adrenomedullin and calcitonin gene-related peptide receptors. Peptides, 2011, 32, 1060-1067.	1.2	22
256	Allosteric modulation of G protein-coupled receptors: A pharmacological perspective. Neuropharmacology, 2011, 60, 24-35.	2.0	235
257	Impact of species variability and â€~probeâ€dependence' on the detection and <i>in vivo</i> validation of allosteric modulation at the M ₄ muscarinic acetylcholine receptor. British Journal of Pharmacology, 2011, 162, 1659-1670.	2.7	60
258	Status of GPCR Modeling and Docking as Reflected by Community-wide GPCR Dock 2010 Assessment. Structure, 2011, 19, 1108-1126.	1.6	269
259	Allostery in GPCRs: â€ [~] MWC' revisited. Trends in Biochemical Sciences, 2011, 36, 663-672.	3.7	64
260	The synthesis and biological evaluation of 2-amino-4,5,6,7,8,9-hexahydrocycloocta[b]thiophenes as allosteric modulators of the A1 adenosine receptor. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3704-3707.	1.0	26
261	Quantification of Allosteric Interactions at G Protein–Coupled Receptors Using Radioligand Binding Assays. Current Protocols in Pharmacology, 2011, 52, Unit 1.22.	4.0	13
262	Molecular Basis of Secretin Docking to Its Intact Receptor Using Multiple Photolabile Probes Distributed throughout the Pharmacophore. Journal of Biological Chemistry, 2011, 286, 23888-23899.	1.6	31
263	The Role of Transmembrane Domain 3 in the Actions of Orthosteric, Allosteric, and Atypical Agonists of the M ₄ Muscarinic Acetylcholine Receptor. Molecular Pharmacology, 2011, 79, 855-865.	1.0	32
264	Importance of lipid-exposed residues in transmembrane segment four for family B calcitonin receptor homo-dimerization. Regulatory Peptides, 2010, 164, 113-119.	1.9	25
265	The effect of social isolation on rat brain expression of genes associated with endocannabinoid signaling. Brain Research, 2010, 1343, 153-167.	1.1	50
266	Secretin Occupies a Single Protomer of the Homodimeric Secretin Receptor Complex. Journal of Biological Chemistry, 2010, 285, 9919-9931.	1.6	21
267	H2 Relaxin Is a Biased Ligand Relative to H3 Relaxin at the Relaxin Family Peptide Receptor 3 (RXFP3). Molecular Pharmacology, 2010, 77, 759-772.	1.0	33
268	Prediction of Functionally Selective Allosteric Interactions at an M ₃ Muscarinic Acetylcholine Receptor Mutant Using Saccharomyces cerevisiae. Molecular Pharmacology, 2010, 78, 205-214.	1.0	19
269	Delineating the Mode of Action of Adenosine A ₁ Receptor Allosteric Modulators. Molecular Pharmacology, 2010, 78, 444-455.	1.0	39
270	Orthosteric and Allosteric Modes of Interaction of Novel Selective Agonists of the M ₁ Muscarinic Acetylcholine Receptor. Molecular Pharmacology, 2010, 78, 94-104.	1.0	61

#	Article	IF	CITATIONS
271	Receptor Activity Modifying Proteins and Their Potential as Drug Targets. Progress in Molecular Biology and Translational Science, 2010, 91, 53-79.	0.9	11
272	Effects of Conformational Restriction of 2-Amino-3-benzoylthiophenes on A ₁ Adenosine Receptor Modulation. Journal of Medicinal Chemistry, 2010, 53, 6550-6559.	2.9	31
273	Allosteric Ligands of the Glucagon-Like Peptide 1 Receptor (GLP-1R) Differentially Modulate Endogenous and Exogenous Peptide Responses in a Pathway-Selective Manner: Implications for Drug Screening. Molecular Pharmacology, 2010, 78, 456-465.	1.0	195
274	Detection of Novel Functional Selectivity at M ₃ Muscarinic Acetylcholine Receptors Using a <i>Saccharomyces cerevisiae</i> Platform. ACS Chemical Biology, 2010, 5, 365-375.	1.6	24
275	Identification of Orthosteric and Allosteric Site Mutations in M2 Muscarinic Acetylcholine Receptors That Contribute to Ligand-selective Signaling Bias. Journal of Biological Chemistry, 2010, 285, 7459-7474.	1.6	149
276	Molecular Mechanisms of Action and In Vivo Validation of an M4 Muscarinic Acetylcholine Receptor Allosteric Modulator with Potential Antipsychotic Properties. Neuropsychopharmacology, 2010, 35, 855-869.	2.8	143
277	Overview of Receptor Allosterism. Current Protocols in Pharmacology, 2010, 51, Unit 1.21.	4.0	34
278	Structural Determinants of Allosteric Agonism and Modulation at the M4 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2010, 285, 19012-19021.	1.6	70
279	Understanding Amylin Receptors. , 2010, , 41-57.		3
280	Calcitonin. , 2010, , 1074-1088.		1
281	Functional Importance of a Structurally Distinct Homodimeric Complex of the Family B G Protein-Coupled Secretin Receptor. Molecular Pharmacology, 2009, 76, 264-274.	1.0	49
282	Determination of Adenosine A ₁ Receptor Agonist and Antagonist Pharmacology Using <i>Saccharomyces cerevisiae</i> : Implications for Ligand Screening and Functional Selectivity. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 277-286.	1.3	46
283	Modulating receptor function through RAMPs: can they represent drug targets in themselves?. Drug Discovery Today, 2009, 14, 413-419.	3.2	55
284	Addition of a Carboxy-Terminal Green Fluorescent Protein Does Not Alter the Binding and Signaling Properties of Relaxin Family Peptide Receptor 3. Annals of the New York Academy of Sciences, 2009, 1160, 105-107.	1.8	1
285	3- and 6-Substituted 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines as A1 adenosine receptor allosteric modulators and antagonists. Bioorganic and Medicinal Chemistry, 2009, 17, 7353-7361.	1.4	41
286	Molecular Basis of Association of Receptor Activity-Modifying Protein 3 with the Family B G Protein-Coupled Secretin Receptor. Biochemistry, 2009, 48, 11773-11785.	1.2	45
287	Allosteric Modulators of the Adenosine A ₁ Receptor: Synthesis and Pharmacological Evaluation of 4-Substituted 2-Amino-3-benzoylthiophenes. Journal of Medicinal Chemistry, 2009, 52, 4543-4547.	2.9	124
288	Orthosteric/Allosteric Bitopic Ligands: Going Hybrid at GPCRs. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 125-135.	3.4	81

#	Article	IF	CITATIONS
289	Homology Modeling of GPCRs. Methods in Molecular Biology, 2009, 552, 97-113.	0.4	9
290	Pattern of Intra-Family Hetero-Oligomerization Involving the G-Protein-Coupled Secretin Receptor. Journal of Molecular Neuroscience, 2008, 36, 279-285.	1.1	44
291	Benzodiazepine ligands can act as allosteric modulators of the Type 1 cholecystokinin receptor. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4401-4404.	1.0	27
292	Pharmacology of 5HT2C receptor-mediated ERK1/2 phosphorylation: Agonist-specific activation pathways and the impact of RNA editing. Biochemical Pharmacology, 2008, 76, 1276-1287.	2.0	19
293	RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. , 2008, 119, 7-23.		149
294	The effects of C-terminal truncation of receptor activity modifying proteins on the induction of amylin receptor phenotype from human CTb receptors. Regulatory Peptides, 2008, 145, 65-71.	1.9	14
295	2-Aminothienopyridazines as Novel Adenosine A1 Receptor Allosteric Modulators and Antagonists. Journal of Medicinal Chemistry, 2008, 51, 6165-6172.	2.9	54
296	New Insights into the Function of M ₄ Muscarinic Acetylcholine Receptors Gained Using a Novel Allosteric Modulator and a DREADD (Designer Receptor Exclusively Activated by a Designer) Tj ETQq0 0 0	rg B TdOve	rlo alo £10 Tf 50
297	Receptor Activity-Modifying Proteins Differentially Modulate the G Protein-Coupling Efficiency of Amylin Receptors. Endocrinology, 2008, 149, 5423-5431.	1.4	130
298	Spatial Approximation between Secretin Residue Five and the Third Extracellular Loop of Its Receptor Provides New Insight into the Molecular Basis of Natural Agonist Binding. Molecular Pharmacology, 2008, 74, 413-422.	1.0	34
299	Identification of N-Terminal Receptor Activity-Modifying Protein Residues Important for Calcitonin Gene-Related Peptide, Adrenomedullin, and Amylin Receptor Function. Molecular Pharmacology, 2008, 74, 1059-1071.	1.0	69
300	A Novel Mechanism of G Protein-coupled Receptor Functional Selectivity. Journal of Biological Chemistry, 2008, 283, 29312-29321.	1.6	165
301	The Impact of Orthosteric Radioligand Depletion on the Quantification of Allosteric Modulator Interactions. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 927-934.	1.3	11
302	Procalcitonin has bioactivity at calcitonin receptor family complexes: Potential mediator implications in sepsis*. Critical Care Medicine, 2008, 36, 1637-1640.	0.4	85
303	Characterisation of the adenosine A1 receptor in Saccharomyces cerevisiae. FASEB Journal, 2008, 22, 727.2.	0.2	0
304	Binding and functional characterisation of allosteric agonists at M2 muscarinic acetylcholine receptors. FASEB Journal, 2008, 22, 724.6.	0.2	0
305	Critical Role for the Second Extracellular Loop in the Binding of Both Orthosteric and Allosteric G Protein-coupled Receptor Ligands. Journal of Biological Chemistry, 2007, 282, 25677-25686.	1.6	137
306	Fluorescence Resonance Energy Transfer Analysis of Secretin Docking to Its Receptor. Journal of Biological Chemistry, 2007, 282, 32834-32843.	1.6	27

#	Article	IF	CITATIONS
307	Molecular Approximations between Residues 21 and 23 of Secretin and Its Receptor: Development of a Model for Peptide Docking with the Amino Terminus of the Secretin Receptor. Molecular Pharmacology, 2007, 72, 280-290.	1.0	35
308	The Relaxin Family Peptide Receptor 3 Activates Extracellular Signal-Regulated Kinase 1/2 through a Protein Kinase C-Dependent Mechanism. Molecular Pharmacology, 2007, 71, 1618-1629.	1.0	81
309	Allosteric Modulation of Muscarinic Acetylcholine Receptors. Current Neuropharmacology, 2007, 5, 157-167.	1.4	114
310	Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11927-11932.	3.3	97
311	Relaxin Receptors - New Drug Targets for Multiple Disease States. Current Drug Targets, 2007, 8, 91-104.	1.0	23
312	Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends in Pharmacological Sciences, 2007, 28, 382-389.	4.0	330
313	Functional Selectivity and Classical Concepts of Quantitative Pharmacology. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 1-13.	1.3	997
314	Allosteric Modulation of G Protein–Coupled Receptors. Annual Review of Pharmacology and Toxicology, 2007, 47, 1-51.	4.2	615
315	Structure-Function Studies of Allosteric Agonism at M2Muscarinic Acetylcholine Receptors. Molecular Pharmacology, 2007, 72, 463-476.	1.0	105
316	Involvement of the sigma ₁ (<i>σ</i> ₁) receptor in the antiâ€amnesic, but not antidepressantâ€kike, effects of the aminotetrahydrofuran derivative ANAVEX1â€41. British Journal of Pharmacology, 2007, 152, 267-279.	2.7	24
317	Complexing Receptor Pharmacology: Modulation of Family B G Protein-Coupled Receptor Function by RAMPs. Annals of the New York Academy of Sciences, 2006, 1070, 90-104.	1.8	72
318	GPCR modulation by RAMPs. , 2006, 109, 173-197.		213
319	Mechanisms of ERK1/2 Regulation by Seven-Transmembrane-Domain Receptors. Current Pharmaceutical Design, 2006, 12, 1683-1702.	0.9	36
320	Editorial [Hot Topic: G Protein-Coupled Receptor Drug Targets (Executive Editors: P.M. Sexton and A.) Tj ETQq() 0 0 ₀ gBT /	Overlock 10 T
321	A Critical Role for the Short Intracellular C Terminus in Receptor Activity-Modifying Protein Function. Molecular Pharmacology, 2006, 70, 1750-1760.	1.0	41
322	Constitutive Formation of Oligomeric Complexes between Family B G Protein-Coupled Vasoactive Intestinal Polypeptide and Secretin Receptors. Molecular Pharmacology, 2006, 69, 363-373.	1.0	61
323	Distinct Receptor Activity-Modifying Protein Domains Differentially Modulate Interaction with Calcitonin Receptors. Molecular Pharmacology, 2006, 69, 1984-1989.	1.0	56
324	Determinants of 1-Piperidinecarboxamide, N-[2-[[5-Amino-l-[[4-(4-pyridinyl)-l-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methy (BIBN4096BS) Affinity for Calcitonin Gene-Related Peptide and Amylin Receptorsâ€"The Role of Receptor Activity Modifying Protein 1. Molecular Pharmacology, 2006, 70, 1984-1991.	l]-2-9x0eth	yl]-4-(1,4-dihy

#	Article	IF	CITATIONS
325	Interaction Studies of Multiple Binding Sites on M4 Muscarinic Acetylcholine Receptors. Molecular Pharmacology, 2006, 70, 736-746.	1.0	26
326	CGRP and Adrenomedullin in the Brain. , 2006, , 771-778.		0
327	Responses of GPCR135 to Human Gene 3 (H3) Relaxin in CHO-K1 Cells Determined by Microphysiometry. Annals of the New York Academy of Sciences, 2005, 1041, 332-337.	1.8	32
328	Characterization of serotonin 5-HT2C receptor signaling to extracellular signal-regulated kinases 1 and 2. Journal of Neurochemistry, 2005, 93, 1603-1615.	2.1	85
329	G-Protein-coupled receptor-protein interactions: Basis for new concepts on receptor structure and function. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 979-987.	0.9	31
330	Effects of urea pretreatment on the binding properties of adenosine A1 receptors. British Journal of Pharmacology, 2005, 146, 1119-1129.	2.7	11
331	Peptide-Oligonucleotide Hybrids in Antisense Therapy. Mini-Reviews in Medicinal Chemistry, 2005, 5, 41-55.	1.1	12
332	Regulation of M2 Muscarinic Acetylcholine Receptor Expression and Signaling by Prolonged Exposure to Allosteric Modulators. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 382-390.	1.3	31
333	G-Protein–Coupled Receptor Mas Is a Physiological Antagonist of the Angiotensin II Type 1 Receptor. Circulation, 2005, 111, 1806-1813.	1.6	346
334	Insights into Interactions between the α-Helical Region of the Salmon Calcitonin Antagonists and the Human Calcitonin Receptor using Photoaffinity Labeling. Journal of Biological Chemistry, 2005, 280, 28610-28622.	1.6	27
335	Pharmacological Discrimination of Calcitonin Receptor: Receptor Activity-Modifying Protein Complexes. Molecular Pharmacology, 2005, 67, 1655-1665.	1.0	196
336	â€~Ins and outs' of seven-transmembrane receptor signalling to ERK. Trends in Endocrinology and Metabolism, 2005, 16, 26-33.	3.1	86
337	Allosteric Modulation of G Protein-Coupled Receptors. Current Pharmaceutical Design, 2004, 10, 2003-2013.	0.9	84
338	Spatial Proximity between a Photolabile Residue in Position 19 of Salmon Calcitonin and the Amino Terminus of the Human Calcitonin Receptor. Journal of Biological Chemistry, 2004, 279, 6720-6729.	1.6	35
339	Application of a Kinetic Model to the Apparently Complex Behavior of Negative and Positive Allosteric Modulators of Muscarinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 1062-1072.	1.3	52
340	Hematological defects in the oc/oc mouse, a model of infantile malignant osteopetrosis. Leukemia, 2004, 18, 1505-1511.	3.3	62
341	Regulation of serotonin 5-HT2C receptors by chronic ligand exposure. European Journal of Pharmacology, 2004, 498, 59-69.	1.7	17
342	Photoaffinity scanning in the mapping of the peptide receptor interface of class II G protein—coupled receptors. Journal of Peptide Science, 2004, 10, 179-203.	0.8	27

#	Article	IF	CITATIONS
343	Mini ReviewCalcitonin. Growth Factors, 2004, 22, 217-224.	0.5	50
344	Amylin receptors: molecular composition and pharmacology. Biochemical Society Transactions, 2004, 32, 865-867.	1.6	78
345	The receptor activity modifying protein family of G protein coupled receptor accessory proteins. Seminars in Cell and Developmental Biology, 2004, 15, 299-308.	2.3	70
346	In vitro autoradiographic localization of calcitonin and amylin binding sites in monkey brain. Journal of Chemical Neuroanatomy, 2004, 27, 217-236.	1.0	59
347	C-protein-coupled receptor allosterism: the promise and the problem(s). Biochemical Society Transactions, 2004, 32, 873-877.	1.6	53
348	Application of photoaffinity crosslinking in determining the interaction between calcitonin and its receptor. International Journal of Peptide Research and Therapeutics, 2003, 10, 447-453.	0.1	0
349	RAMPs: 5 years on, where to now?. Trends in Pharmacological Sciences, 2003, 24, 596-601.	4.0	83
350	Application of photoaffinity crosslinking in determining the interaction between calcitonin and its receptor. International Journal of Peptide Research and Therapeutics, 2003, 10, 447-453.	0.9	0
351	Novel Receptor Partners and Function of Receptor Activity-modifying Proteins. Journal of Biological Chemistry, 2003, 278, 3293-3297.	1.6	283
352	Calcitonin. , 2003, , 220-230.		3
353	International Union of Pharmacology. XXXII. The Mammalian Calcitonin Gene-Related Peptides, Adrenomedullin, Amylin, and Calcitonin Receptors. Pharmacological Reviews, 2002, 54, 233-246.	7.1	714
354	Lipopolysaccharide supports survival and fusion of preosteoclasts independent of TNF-?, IL-1, and RANKL. Journal of Cellular Physiology, 2002, 190, 101-108.	2.0	110
355	Molecular Pharmacology of the Calcitonin Receptor. Receptors and Channels, 2002, 8, 243-255.	1.1	73
356	Calcitonin/Amylin Receptors and Ramps. Scientific World Journal, The, 2001, 1, 9-9.	0.8	0
357	Receptor activity modifying proteins. Cellular Signalling, 2001, 13, 73-83.	1.7	166
358	Multiple Ramp Domains Are Required for Generation of Amylin Receptor Phenotype from the Calcitonin Receptor Gene Product. Biochemical and Biophysical Research Communications, 2000, 267, 368-372.	1.0	71
359	Mouse receptor-activity-modifying proteins 1, -2 and -3: amino acid sequence, expression and function. Molecular and Cellular Endocrinology, 2000, 162, 35-43.	1.6	74
360	Calcitonin receptor antibodies in the identification of osteoclasts. Bone, 1999, 25, 1-8.	1.4	87

#	Article	IF	CITATIONS
361	Multiple Amylin Receptors Arise from Receptor Activity-Modifying Protein Interaction with the Calcitonin Receptor Gene Product. Molecular Pharmacology, 1999, 56, 235-242.	1.0	456
362	Function of the Rat Calcitonin Receptors, C1a and C1b, Expressed inXenopusOocytes. Biochemical and Biophysical Research Communications, 1998, 242, 484-491.	1.0	6
363	Purification of Calcitonin-Like Peptides from Rat Brain and Pituitary*. Endocrinology, 1998, 139, 982-992.	1.4	33
364	Characterization of binding sites for amylin, calcitonin, and CGRP in primate kidney. American Journal of Physiology - Renal Physiology, 1998, 274, F51-F62.	1.3	12
365	Characterization of Amylin and Calcitonin Receptor Binding in the Mouse α-Thyroid-Stimulating Hormone Thyrotroph Cell Line*. Endocrinology, 1997, 138, 3486-3496.	1.4	39
366	Electrophoretic Mobility and Glycosylation Characteristics of Heterogeneously Expressed Calcitonin Receptors ¹ . Endocrinology, 1997, 138, 530-539.	1.4	21
367	Structure/Function Relationships of Calcitonin Analogues as Agonists, Antagonists, or Inverse Agonists in a Constitutively Activated Receptor Cell System. Molecular Pharmacology, 1997, 51, 658-665.	1.0	42
368	Heterogeneity of the Calcitonin Receptor: Functional Aspects in Osteoclasts and Other Sites. Journal of Nutrition, 1995, 125, 2009S-2014S.	1.3	13
369	Calcium inflow in cells transfected with cloned rat and porcine calcitonin receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1265, 213-219.	1.9	8
370	Comparative distribution off receptors for amylin and the related peptides calcitonin gene related peptide and calcitonin in rat and monkey brain. Canadian Journal of Physiology and Pharmacology, 1995, 73, 1037-1041.	0.7	77
371	In vitro autoradiographic localization of the calcitonin receptor isoforms, C1a and C1b, in rat brain. Neuroscience, 1995, 69, 1223-1237.	1.1	59
372	Neurotransmitters as Tools in the Mapping of the Human Brain. Advances in Behavioral Biology, 1995, , 1-24.	0.2	4
373	In vitro autoradiographic localization of calcitonin binding sites in human medulla oblongata. Journal of Comparative Neurology, 1994, 341, 449-463.	0.9	15
374	The ontogeny of [125i]rat-α-cgrp binding sites in the spinal cord of sheep: A prenatal and postnatal study. Neuroscience, 1994, 62, 257-264.	1.1	6
375	In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience, 1994, 62, 553-567.	1.1	247
376	Localization and Regulation of Renal Receptors for Angiotensin II and Atrial Natriuretic Peptide Tohoku Journal of Experimental Medicine, 1992, 166, 41-56.	0.5	8
377	Biologically active salmon calcitonin-like peptide is present in rat brain. Brain Research, 1992, 596, 279-284.	1.1	67
378	Central nervous system binding sites for calcitonin and calcitonin gene-related peptide. Molecular Neurobiology, 1991, 5, 251-273.	1.9	84

#	Article	IF	CITATIONS
379	Angiotensin II Receptors in the Kidney. American Journal of Hypertension, 1990, 3, 250-255.	1.0	37
380	Evidence for a new subclass of calcitonin/ calcitonin gene-related peptide binding site in rat brain. Neurochemistry International, 1988, 12, 323-335.	1.9	98
381	Localization and characterization of renal calcitonin receptors by in vitro autoradiography. Kidney International, 1987, 32, 862-868.	2.6	52
382	Localization of binding sites for calcitonin gene-related peptide in rat brain by in vitro autoradiography. Neuroscience, 1986, 19, 1235-1245.	1.1	108
383	Isoforms of the rat calcitonin receptor: consequences for ligand binding and signal transduction. , 0,		37
384	Electrophoretic Mobility and Glycosylation Characteristics of Heterogeneously Expressed Calcitonin Receptors. , 0, .		4
385	Characterization of Amylin and Calcitonin Receptor Binding in the Mouse α-Thyroid-Stimulating Hormone Thyrotroph Cell Line*. , 0, .		17
386	Ramp3. The AFCS-nature Molecule Pages, 0, , .	0.2	0
387	Ramp2. The AFCS-nature Molecule Pages, 0, , .	0.2	0
388	Relaxin family peptide receptor 3. The AFCS-nature Molecule Pages, 0, , .	0.2	0
389	Second Messenger Assays for G Protein-Coupled Receptors: cAMP, Ca2+, Inositol Phosphates, ERK1/2. ,		0