Nico De Jong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1869720/publications.pdf

Version: 2024-02-01

367 papers

15,905 citations

65 h-index 22161 113 g-index

395 all docs

395
docs citations

395 times ranked 7077 citing authors

#	Article	IF	CITATIONS
1	Measurement of Pipe and Fluid Properties With a Matrix Array-Based Ultrasonic Clamp-On Flow Meter. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 309-322.	3.0	8
2	Hydroxyl Ethyl Starch (HES) Preserves Intrarenal Microcirculatory Perfusion Shown by Contrast-Enhanced Ultrasound (Ceus), and Renal Function in a Severe Hemodilution Model in Pigs. Shock, 2022, 57, 457-466.	2.1	4
3	Spatiotemporal Distribution of Nanodroplet Vaporization in a Proton Beam Using Real-Time Ultrasound Imaging for Range Verification. Ultrasound in Medicine and Biology, 2022, 48, 149-156.	1.5	9
4	Refraction-Corrected Transcranial Ultrasound Imaging Through the Human Temporal Window Using a Single Probe. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1191-1203.	3.0	13
5	Theranostic Microbubbles with Homogeneous Ligand Distribution for Higher Binding Efficacy. Pharmaceutics, 2022, 14, 311.	4.5	3
6	Acoustic Modulation Enables Proton Detection With Nanodroplets at Body Temperature. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2028-2038.	3.0	3
7	Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging. Cardiovascular Ultrasound, 2022, 20, 11.	1.6	3
8	Internalization of targeted microbubbles by endothelial cells and drug delivery by pores and tunnels. Journal of Controlled Release, 2022, 347, 460-475.	9.9	12
9	Independent Component Analysis Filter for Small Vessel Contrast Imaging During Fast Tissue Motion. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2282-2292.	3.0	1
10	Multi-angle data acquisition to compensate transducer finite size in photoacoustic tomography. Photoacoustics, 2022, 27, 100373.	7.8	12
11	Dispersing and Sonoporating Biofilm-Associated Bacteria with Sonobactericide. Pharmaceutics, 2022, 14, 1164.	4.5	4
12	Design and Proof-of-Concept of a Matrix Transducer Array for Clamp-On Ultrasonic Flow Measurements. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2555-2568.	3.0	2
13	An iterative method to evaluate one-dimensional pulsed nonlinear elastic wavefields and mixing of elastic waves in solids. Journal of the Acoustical Society of America, 2022, 151, 3316-3327.	1.1	О
14	Time-resolved absolute radius estimation of vibrating contrast microbubbles using an acoustical camera. Journal of the Acoustical Society of America, 2022, 151, 3993-4003.	1.1	4
15	Imaging Scheme for 3-D High-Frame-Rate Intracardiac Echography: A Simulation Study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2862-2874.	3.0	3
16	Accelerated 2-D Real-Time Refraction-Corrected Transcranial Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2599-2610.	3.0	7
17	Measurement of Pipe and Liquid Parameters Using the Beam Steering Capabilities of Array-Based Clamp-On Ultrasonic Flow Meters. Sensors, 2022, 22, 5068.	3.8	3
18	Lamb Waves and Adaptive Beamforming for Aberration Correction in Medical Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 84-91.	3.0	11

#	Article	IF	CITATIONS
19	An Algorithm to Minimize the Zero-Flow Error in Transit-Time Ultrasonic Flowmeters. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	4.7	8
20	Combining Ultrafast Ultrasound and High-Density EMG to Assess Local Electromechanical Muscle Dynamics: A Feasibility Study. IEEE Access, 2021, 9, 45277-45288.	4.2	23
21	The Impact of Lipid Handling and Phase Distribution on the Acoustic Behavior of Microbubbles. Pharmaceutics, 2021, 13, 119.	4.5	11
22	The Preparation of Chicken Ex Ovo Embryos and Chorioallantoic Membrane Vessels as In Vivo Model for Contrast-Enhanced Ultrasound Imaging and Microbubble-Mediated Drug Delivery Studies. Journal of Visualized Experiments, 2021, , .	0.3	5
23	Motion-compensated noninvasive periodontal health monitoring using handheld and motor-based photoacoustic-ultrasound imaging systems. Biomedical Optics Express, 2021, 12, 1543.	2.9	29
24	Feasibility of Doppler Ultrasound for Cortical Cerebral Blood Flow Velocity Monitoring During Major Non-cardiac Surgery of Newborns. Frontiers in Pediatrics, 2021, 9, 656806.	1.9	4
25	Corrections to "Vibrational Responses of Bound and Nonbound Targeted Lipid-Coated Single Microbubbles― IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2319-2319.	3.0	0
26	Corrections to "Targeted Microbubble Mediated Sonoporation of Endothelial Cells In Vivo― IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2320-2320.	3.0	0
27	Corrections to "Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and In Vivo Evaluationâ€, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2321-2321.	3.0	1
28	Effect of a Radiotherapeutic Megavoltage Beam on Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 2021, 47, 1857-1867.	1.5	5
29	Optimization of Microbubble Concentration and Acoustic Pressure for Left Ventricular High-Frame-Rate EchoPIV in Patients. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2432-2443.	3.0	4
30	Exploiting nonlinear wave propagation to improve the precision of ultrasonic flow meters. Ultrasonics, 2021, 116, 106476.	3.9	3
31	High Frame Rate Volumetric Imaging of Microbubbles Using a Sparse Array and Spatial Coherence Beamforming. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3069-3081.	3.0	17
32	A Transceiver ASIC for a Single-Cable 64-Element Intra-Vascular Ultrasound Probe. IEEE Journal of Solid-State Circuits, 2021, 56, 3157-3166.	5.4	11
33	Erratum to "Lamb Waves and Adaptive Beamforming for Aberration Correction in Medical Ultrasound Imaging― IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 352-353.	3.0	5
34	Design of an Ultrasound Transceiver ASIC with a Switching-Artifact Reduction Technique for 3D Carotid Artery Imaging. Sensors, 2021, 21, 150.	3.8	7
35	Vancomycin-decorated microbubbles as a theranostic agent for Staphylococcus aureus biofilms. International Journal of Pharmaceutics, 2021, 609, 121154.	5.2	11
36	Lipid Phase Distribution and Acoustic Response of DSPE-based Microbubbles. , 2021, , .		0

#	Article	IF	Citations
37	Transcranial Ultrasound Imaging with Estimating the Geometry, Position and Wave-Speed of Temporal Bone. , $2021, \ldots$		2
38	Experimental Investigation of the Effect of Subdicing on an Ultrasound Matrix Transducer., 2021,,.		3
39	Impact of Bit Errors in Digitized RF Data on Ultrasound Image Quality. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 13-24.	3.0	2
40	Local myocardial stiffness variations identified by high frame rate shear wave echocardiography. Cardiovascular Ultrasound, 2020, 18, 40.	1.6	5
41	Receive/Transmit Aperture Selection for 3D Ultrasound Imaging with a 2D Matrix Transducer. Applied Sciences (Switzerland), 2020, 10, 5300.	2.5	9
42	A direct comparison of natural and acoustic-radiation-force-induced cardiac mechanicalÂwaves. Scientific Reports, 2020, 10, 18431.	3.3	11
43	Suppression of Lamb wave excitation via aperture control of a transducer array for ultrasonic clamp-on flow metering. Journal of the Acoustical Society of America, 2020, 147, 2670-2681.	1.1	3
44	High-Resolution Imaging of Intracellular Calcium Fluctuations Caused by Oscillating Microbubbles. Ultrasound in Medicine and Biology, 2020, 46, 2017-2029.	1.5	26
45	Parasternal Versus Apical View in Cardiac Natural Mechanical Wave Speed Measurements. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1590-1602.	3.0	11
46	4-D Echo-Particle Image Velocimetry in a Left Ventricular Phantom. Ultrasound in Medicine and Biology, 2020, 46, 805-817.	1.5	38
47	Opening of endothelial cell–cell contacts due to sonoporation. Journal of Controlled Release, 2020, 322, 426-438.	9.9	53
48	Design of a Dual Frequency Probe for Photoacoustic Imaging of the Carotid Artery. , 2020, , .		0
49	Enhanced contrast acousticâ€resolution photoacoustic microscopy using doubleâ€stage delayâ€multiplyâ€andâ€sum beamformer for vasculature imaging. Journal of Biophotonics, 2019, 12, e201900133.	2.3	22
50	Myocardial Stretch Post-atrial Contraction in Healthy Volunteers and Hypertrophic Cardiomyopathy Patients. Ultrasound in Medicine and Biology, 2019, 45, 1987-1998.	1.5	13
51	Combined Confocal Microscope and Brandaris 128 Ultra-High-Speed Camera. Ultrasound in Medicine and Biology, 2019, 45, 2575-2582.	1.5	19
52	Development of a Stationary 3D Photoacoustic Imaging System Using Sparse Single-Element Transducers: Phantom Study. Applied Sciences (Switzerland), 2019, 9, 4505.	2.5	19
53	Reproducibility of Natural Shear Wave Elastography Measurements. Ultrasound in Medicine and Biology, 2019, 45, 3172-3185.	1.5	11
54	Naturally Occurring Shear Waves in Healthy Volunteers and Hypertrophic Cardiomyopathy Patients. Ultrasound in Medicine and Biology, 2019, 45, 1977-1986.	1.5	23

#	Article	IF	Citations
55	Tomographic PIV in a model of the left ventricle: 3D flow past biological and mechanical heart valves. Journal of Biomechanics, 2019, 90, 40-49.	2.1	28
56	A comparison of natural and acoustic radiation force induced shear wave propagation speed measurements in open-chest pigs. , 2019, , .		1
57	Numerical model of Lamb wave propagation in the tapered septal wall of the heart. Proceedings of Meetings on Acoustics, 2019, , .	0.3	0
58	Direction-independent bulk shear wave speed in 3D., 2019,,.		0
59	3D high frame rate flow measurement using a prototype matrix transducer for carotid imaging. , 2019,		2
60	Acoustic Design of a Transducer Array for Ultrasonic Clamp-on Flow Metering., 2019,,.		3
61	Two-Stage Beamforming for Phased Array Imaging Using the Fast Hankel Transform. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 297-308.	3.0	2
62	Acoustic Characterization of the CLINIcell for Ultrasound Contrast Agent Studies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 244-246.	3.0	15
63	Acoustic Characterization of a Vessel-on-a-Chip Microfluidic System for Ultrasound-Mediated Drug Delivery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 570-581.	3.0	16
64	High Frame Rate Ultrasound Particle Image Velocimetry for Estimating High Velocity Flow Patterns in the Left Ventricle. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2222-2232.	3.0	21
65	Assessment of human left ventricle flow using statistical shape modelling and computational fluid dynamics. Journal of Biomechanics, 2018, 74, 116-125.	2.1	28
66	Monodisperse Versus Polydisperse Ultrasound Contrast Agents: Non-Linear Response, Sensitivity, and Deep Tissue Imaging Potential. Ultrasound in Medicine and Biology, 2018, 44, 1482-1492.	1.5	53
67	A $0.91 \mathrm{mW/element}$ pitch-matched front-end ASIC with integrated subarray beamforming ADC for miniature 3D ultrasound probes. , $2018,$, .		7
68	Brandaris Ultra High-Speed Imaging Facility. , 2018, , 49-77.		1
69	Virtually Extended Array Imaging Improves Lateral Resolution in High Frame Rate Volumetric Imaging. , 2018, , .		0
70	Sparse Volumetric PZT Array with Density Tapering. , 2018, , .		7
71	Minimizing the Zero-Flow Error in Transit-Time Ultrasonic Flow Meters. , 2018, , .		2
72	SPIO labeling of endothelial cells using ultrasound and targeted microbubbles at diagnostic pressures. PLoS ONE, 2018, 13, e0204354.	2.5	4

#	Article	IF	Citations
73	A 2-D Ultrasound Transducer With Front-End ASIC and Low Cable Count for 3-D Forward-Looking Intravascular Imaging: Performance and Characterization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1832-1844.	3.0	31
74	A Pitch-Matched Front-End ASIC With Integrated Subarray Beamforming ADC for Miniature 3-D Ultrasound Probes. IEEE Journal of Solid-State Circuits, 2018, 53, 3050-3064.	5.4	43
75	Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury. Critical Care Medicine, 2018, 46, 1284-1292.	0.9	65
76	A Front-End ASIC With High-Voltage Transmit Switching and Receive Digitization for 3-D Forward-Looking Intravascular Ultrasound Imaging. IEEE Journal of Solid-State Circuits, 2018, 53, 2284-2297.	5.4	49
77	Fast Volumetric Imaging Using a Matrix Transesophageal Echocardiography Probe with Partitioned Transmit–Receive Array. Ultrasound in Medicine and Biology, 2018, 44, 2025-2042.	1.5	5
78	Acoustic characterization of a miniature matrix transducer for pediatric 3D transesophageal echocardiography. Ultrasound in Medicine and Biology, 2018, 44, 2143-2154.	1.5	7
79	High-Frame-Rate Contrast-enhanced US Particle Image Velocimetry in the Abdominal Aorta: First Human Results. Radiology, 2018, 289, 119-125.	7.3	18
80	A Reconfigurable Ultrasound Transceiver ASIC With <inline-formula> <tex-math notation="LaTeX">\$24imes40\$ </tex-math> </inline-formula> Elements for 3-D Carotid Artery Imaging. IEEE Journal of Solid-State Circuits, 2018, 53, 2065-2075.	5.4	30
81	3D functional ultrasound imaging of pigeons. Neurolmage, 2018, 183, 469-477.	4.2	52
82	High-Frame-Rate Contrast-Enhanced Ultrasound for Velocimetry in the Human Abdominal Aorta. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2245-2254.	3.0	18
83	Non-spherical oscillations drive the ultrasound-mediated release from targeted microbubbles. Communications Physics, 2018, 1 , .	5.3	35
84	Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: <i>In Vitro</i> and <i>In Vivo</i> Evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 555-567.	3.0	24
85	A Front-End ASIC With Receive Sub-array Beamforming Integrated With a \$32 imes 32\$ PZT Matrix Transducer for 3-D Transesophageal Echocardiography. IEEE Journal of Solid-State Circuits, 2017, 52, 994-1006.	5.4	70
86	Cardiac Shear Wave Velocity Detection in the Porcine Heart. Ultrasound in Medicine and Biology, 2017, 43, 753-764.	1.5	50
87	Vibrational Responses of Bound and Nonbound Targeted Lipid-Coated Single Microbubbles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 785-797.	3.0	12
88	Laser-Activated Polymeric Microcapsules for Ultrasound Imaging and Therapy: InÂVitro Feasibility. Biophysical Journal, 2017, 112, 1894-1907.	0.5	5
89	Cardiac Shear Wave Elastography Using a Clinical Ultrasound System. Ultrasound in Medicine and Biology, 2017, 43, 1596-1606.	1.5	37
90	A front-end ASIC with high-voltage transmit switching and receive digitization for forward-looking intravascular ultrasound., 2017,,.		8

#	Article	IF	Citations
91	Laser-driven resonance of dye-doped oil-coated microbubbles: Experimental study. Journal of the Acoustical Society of America, 2017, 141, 4832-4846.	1.1	6
92	Laser-driven resonance of dye-doped oil-coated microbubbles: A theoretical and numerical study. Journal of the Acoustical Society of America, 2017, 141, 2727-2745.	1.1	7
93	On the dynamics of StemBells: Microbubble-conjugated stem cells for ultrasound-controlled delivery. Applied Physics Letters, 2017, 111, 023701.	3.3	5
94	Compressive 3D ultrasound imaging using a single sensor. Science Advances, 2017, 3, e1701423.	10.3	98
95	Towards 3D ultrasound imaging of the carotid artery using a programmable and tileable matrix array. , 2017, , .		0
96	Notice of Removal: Forward-looking IVUS transducer with front-end ASIC for 3D imaging. , 2017, , .		0
97	Dual stage beamforming in the absence of front-end receive focusing. Physics in Medicine and Biology, 2017, 62, 6631-6648.	3.0	2
98	Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 232-251.	3.0	48
99	Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer. Ultrasonics, 2017, 74, 144-152.	3.9	22
100	A comparison in therapeutic efficacy of several time points of intravenous StemBell administration in a rat model of acute myocardial infarction. Cytotherapy, 2017, 19, 131-140.	0.7	7
101	A front-end ASIC for miniature 3-D ultrasound probes with in-probe receive digitization. , 2017, , .		1
102	Notice of Removal: Volumetric imaging using adult matrix TEE with separated transmit and receive array. , 2017, , .		0
103	Notice of Removal: Acoustical compressive 3D imaging with a single sensor. , 2017, , .		0
104	A front-end ASIC for miniature 3-D ultrasound probes with in-probe receive digitization. , 2017, , .		0
105	Notice of Removal: Enhanced subharmonic emission of single microbubbles by acoustic deflation. , 2017, , .		0
106	Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification. PLoS ONE, 2017, 12, e0180747.	2.5	17
107	3D Imaging with a single-element forward-looking steerable IVUS catheter: initial testing. , 2016, , .		8
108	Uniform scattering and attenuation of acoustically sorted ultrasound contrast agents: Modeling and experiments. Journal of the Acoustical Society of America, 2016, 140, 2506-2517.	1.1	72

#	Article	IF	Citations
109	Loss of gas from echogenic liposomes exposed to pulsed ultrasound. Physics in Medicine and Biology, 2016, 61, 8321-8339.	3.0	9
110	Native blood speckle vs ultrasound contrast agent for particle image velocimetry with ultrafast ultrasound - in vitro experiments. , $2016, , .$		8
111	Combined optical sizing and acoustical characterization of single freely-floating microbubbles. Applied Physics Letters, 2016, 109, .	3.3	3
112	Improving the Performance of a 1-D Ultrasound Transducer Array by Subdicing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 1161-1171.	3.0	7
113	Detection of Contrast Agents: Plane Wave Versus Focused Transmission. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 203-211.	3.0	37
114	Stability of Monodisperse Phospholipid-Coated Microbubbles Formed by Flow-Focusing at High Production Rates. Langmuir, 2016, 32, 3937-3944.	3.5	74
115	Viability of endothelial cells after ultrasound-mediated sonoporation: Influence of targeting, oscillation, and displacement of microbubbles. Journal of Controlled Release, 2016, 238, 197-211.	9.9	7 5
116	The role of sub-dicing in the acoustical design of an ultrasound matrix transducer for carotid arteries imaging. , $2016, \ldots$		3
117	Quantification of Endothelial αvβ3 Expression with High-Frequency Ultrasound and Targeted Microbubbles: InÂVitroÂand InÂVivo Studies. Ultrasound in Medicine and Biology, 2016, 42, 2283-2293.	1.5	21
118	Development of a new therapeutic technique to direct stem cells to the infarcted heart using targeted microbubbles: StemBells. Stem Cell Research, 2016, 17, 6-15.	0.7	24
119	Frequency Analysis of the Photoacoustic Signal Generated by Coronary Atherosclerotic Plaque. Ultrasound in Medicine and Biology, 2016, 42, 2017-2025.	1.5	24
120	A Prototype PZT Matrix Transducer With Low-Power Integrated Receive ASIC for 3-D Transesophageal Echocardiography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 47-59.	3.0	60
121	A Broadband Polyvinylidene Difluoride-Based Hydrophone with Integrated Readout Circuit for Intravascular Photoacoustic Imaging. Ultrasound in Medicine and Biology, 2016, 42, 1239-1243.	1.5	17
122	Droplets, Bubbles and Ultrasound Interactions. Advances in Experimental Medicine and Biology, 2016, 880, 157-174.	1.6	28
123	Carotid artery wall dynamics captured with multi-plane high-frame-rate imaging. , 2015, , .		2
124	Dynamic acousto-elastic testing applied to a highly dispersive medium and evidence of shell buckling of lipid-coated gas microbubbles. Journal of the Acoustical Society of America, 2015, 138, 2668-2677.	1.1	8
125	Calibrating Doppler Imaging of Preterm Intracerebral Circulation Using a Microvessel Flow Phantom. Frontiers in Human Neuroscience, 2015, 8, 1068.	2.0	10
126	Carotid Intraplaque Neovascularization Quantification Software (CINQS). IEEE Journal of Biomedical and Health Informatics, 2015, 19, 332-338.	6.3	15

#	Article	IF	Citations
127	Measuring submicrometer displacement vectors using high-frame-rate ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1733-1744.	3.0	6
128	Synthetic Aperture Sequential Beamforming for phased array imaging., 2015,,.		7
129	Low-power receive electronics for a miniature real-time 3D ultrasound probe. , 2015, , .		3
130	Myocardial passive shear wave detection. , 2015, , .		5
131	Increasing specificity of contrast-enhanced ultrasound imaging using the interaction of quasi counter-propagating wavefronts: a proof of concept. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1768-1778.	3.0	2
132	Subharmonic, Non-linear Fundamental and Ultraharmonic Imaging of Microbubble Contrast at High Frequencies. Ultrasound in Medicine and Biology, 2015, 41, 486-497.	1.5	29
133	Fully Automated Carotid Plaque Segmentation in Combined Contrast-Enhanced and B-Mode Ultrasound. Ultrasound in Medicine and Biology, 2015, 41, 517-531.	1.5	14
134	Targeted ultrasound contrast agents for ultrasound molecular imaging and therapy. International Journal of Hyperthermia, 2015, 31, 90-106.	2.5	60
135	Quantification of bound microbubbles in ultrasound molecular imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1190-1200.	3.0	8
136	Impulse response method for characterization of echogenic liposomes. Journal of the Acoustical Society of America, 2015, 137, 1693-1703.	1.1	11
137	Non-linear Response and Viscoelastic Properties of Lipid-Coated Microbubbles: DSPC versus DPPC. Ultrasound in Medicine and Biology, 2015, 41, 1432-1445.	1.5	51
138	Unique pumping-out fracturing mechanism of a polymer-shelled contrast agent: an acoustic characterization and optical visualization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 451-462.	3.0	9
139	Intravital microscopy of localized stem cell delivery using microbubbles and acoustic radiation force. Biotechnology and Bioengineering, 2015, 112, 220-227.	3.3	33
140	Feasibility of in vivo contrast-enhanced imaging of the renal cortex during hemorrhagic shock. , 2015, , .		1
141	Ultrasound and microbubble mediated drug delivery: Acoustic pressure as determinant for uptake via membrane pores or endocytosis. Journal of Controlled Release, 2015, 197, 20-28.	9.9	220
142	Influence of binding on the vibrational responses of targeted lipid-coated microbubbles. , 2014, , .		1
143	Photoacoustic imaging of carotid artery atherosclerosis. Journal of Biomedical Optics, 2014, 19, 110504.	2.6	61
144	Targeted microbubble mediated sonoporation of endothelial cells in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1661-1667.	3.0	34

#	Article	IF	Citations
145	DSPC or DPPC as main shell component influences ligand distribution and binding area of lipid-coated targeted microbubbles. European Journal of Lipid Science and Technology, 2014, 116, 1217-1227.	1.5	31
146	High frame rate ultrasound displacement vector imaging. , 2014, , .		3
147	Fully automated carotid plaque segmentation in combined B-mode and contrast enhanced ultrasound. , 2014, , .		1
148	Atherosclerotic carotid lumen segmentation in combined B-mode and contrast enhanced ultrasound images. Proceedings of SPIE, 2014 , , .	0.8	2
149	Acoustic droplet vaporization is initiated by superharmonic focusing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1697-1702.	7.1	159
150	New Quantification Methods for Carotid Intra-plaque Neovascularization Using Contrast-Enhanced Ultrasound. Ultrasound in Medicine and Biology, 2014, 40, 25-36.	1.5	45
151	On the Acoustic Properties of Vaporized Submicron Perfluorocarbon Droplets. Ultrasound in Medicine and Biology, 2014, 40, 1379-1384.	1.5	35
152	Ultrafast vapourization dynamics of laser-activated polymeric microcapsules. Nature Communications, 2014, 5, 3671.	12.8	31
153	Nonlinear dynamics of single freely-floating microbubbles under prolonged insonation. , 2014, , .		0
154	High-Definition Imaging of Carotid Artery Wall Dynamics. Ultrasound in Medicine and Biology, 2014, 40, 2392-2403.	1.5	90
155	Low-Amplitude Non-linear Volume Vibrations of Single Microbubbles Measured with an "Acoustical Camera― Ultrasound in Medicine and Biology, 2014, 40, 1282-1295.	1.5	19
156	Lipid Shedding from Single Oscillating Microbubbles. Ultrasound in Medicine and Biology, 2014, 40, 1834-1846.	1.5	71
157	Imaging Microvasculature with Contrast-Enhanced Ultraharmonic Ultrasound. Ultrasound in Medicine and Biology, 2014, 40, 1318-1328.	1.5	27
158	Acoustic behavior of microbubbles and implications for drug delivery. Advanced Drug Delivery Reviews, 2014, 72, 28-48.	13.7	295
159	Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects. Review of Scientific Instruments, 2013, 84, 063701.	1.3	34
160	Current status and future developments of contrast-enhanced ultrasound of carotid atherosclerosis. Journal of Vascular Surgery, 2013, 57, 539-546.	1.1	80
161	Acoustical response of DSPC versus DPPC lipid-coated microbubbles. , 2013, , .		6
162	Microbubble oscillations in capillary tubes. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 105-114.	3.0	25

#	Article	IF	Citations
163	20 years of ultrasound contrast agent modeling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 7-20.	3.0	122
164	Contrast-Enhanced Intravascular Ultrasound Pulse Sequences for Bandwidth-Limited Transducers. Ultrasound in Medicine and Biology, 2013, 39, 706-713.	1.5	36
165	Far wall pseudo-enhancement: A neglected artifact in carotid contrast-enhanced ultrasound?. Atherosclerosis, 2013, 229, 451-452.	0.8	8
166	The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets. Ultrasonics, 2013, 53, 1368-1376.	3.9	83
167	Secondary Bjerknes Forces Deform Targeted Microbubbles. Ultrasound in Medicine and Biology, 2013, 39, 490-506.	1.5	35
168	Very different performance of the power Doppler modalities of several ultrasound machines ascertained by a microvessel flow phantom. Arthritis Research and Therapy, 2013, 15, R162.	3.5	18
169	Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. Journal of the Acoustical Society of America, 2013, 134, 1610-1621.	1.1	57
170	Assessment of subclinical atherosclerosis using contrast-enhanced ultrasound. European Heart Journal Cardiovascular Imaging, 2013, 14, 56-61.	1.2	17
171	Ultrasound-guided photoacoustic image reconstruction: image completion and boundary suppression. Journal of Biomedical Optics, 2013, 18, 096017.	2.6	6
172	Role of intracellular calcium and reactive oxygen species in microbubble-mediated alterations of endothelial layer permeability. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 1811-1815.	3.0	21
173	New quantification methods for carotid intraplaque neovascularization in contrast enhanced ultrasound. , 2013, , .		0
174	Characterization of microbubble-loaded stem cells for targeted cell therapy. , 2013, , .		0
175	Liposome shedding from a vibrating microbubble on nanoseconds timescale., 2013,,.		2
176	Chirp resonance spectroscopy of single lipid-coated microbubbles using an "acoustical cameraâ€. Journal of the Acoustical Society of America, 2012, 132, EL470-EL475.	1.1	10
177	Optimal kernel sizes for 4D image reconstruction using normalized convolution from sparse fast-rotating transesophageal 2D ultrasound images. , 2012, , .		1
178	Analysis of neovascularization of atherosclerotic carotid plaques in contrast enhanced ultrasound. , 2012, , .		0
179	High frame rate ultrasound imaging of human carotid artery dynamics. , 2012, , .		5
180	An "acoustical camera―for <i>in vitro</i> characterization of contrast agent microbubble vibrations. Applied Physics Letters, 2012, 100, .	3.3	15

#	Article	IF	Citations
181	Two contrast detection sequences for bandwidth-limited intravascular ultrasound transducers. , 2012, , .		0
182	Characterizing ultrasound-controlled drug release by high-speed fluorescence imaging., 2012,,.		0
183	Ultrasound contrast agents mediated cell labeling for MRI tracking. , 2012, , .		0
184	Motion compensation method using dynamic programming for quantification of neovascularization in carotid atherosclerotic plaques with contrast enhanced ultrasound (CEUS). Proceedings of SPIE, 2012, , .	0.8	11
185	Plane-wave ultrasound beamforming using a nonuniform fast fourier transform. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 2684-91.	3.0	58
186	Far-Wall Pseudoenhancement During Contrast-Enhanced Ultrasound of the Carotid Arteries: Clinical Description andÂlnÂVitro Reproduction. Ultrasound in Medicine and Biology, 2012, 38, 593-600.	1.5	66
187	InÂVivo Characterization of Ultrasound Contrast Agents: Microbubble Spectroscopy in a Chicken Embryo. Ultrasound in Medicine and Biology, 2012, 38, 1608-1617.	1.5	32
188	Mode Vibrations of a Matrix Transducer for Three-Dimensional Second Harmonic Transesophageal Echocardiography. Ultrasound in Medicine and Biology, 2012, 38, 1820-1832.	1.5	5
189	Acoustical Properties of Individual Liposome-Loaded Microbubbles. Ultrasound in Medicine and Biology, 2012, 38, 2174-2185.	1.5	45
190	Quantitative Analysis of Ultrasound Contrast Flow Behavior in Carotid Plaque Neovasculature. Ultrasound in Medicine and Biology, 2012, 38, 2072-2083.	1.5	26
191	Brandaris 128 ultra-high-speed imaging facility: 10 years of operation, updates, and enhanced features. Review of Scientific Instruments, 2012, 83, 103706.	1.3	52
192	Front-end receiver electronics for a matrix transducer for 3-D transesophageal echocardiography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1500-1512.	3.0	39
193	Human platelet lysate as a fetal bovine serum substitute improves human adipose-derived stromal cell culture for future cardiac repair applications. Cell and Tissue Research, 2012, 348, 119-130.	2.9	84
194	Biodegradable polymeric microcapsules for selective ultrasound-triggered drug release. Soft Matter, 2011, 7, 5417.	2.7	67
195	Optical characterization of individual liposome-loaded microbubbles. , $2011,\ldots$		0
196	Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces. Physics in Medicine and Biology, 2011, 56, 6161-6177.	3.0	39
197	"Compression-only―behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles. Journal of the Acoustical Society of America, 2011, 129, 1729-1739.	1.1	70
198	Buckling resistance of solid shell bubbles under ultrasound. Journal of the Acoustical Society of America, 2011, 129, 1231-1239.	1.1	64

#	Article	IF	Citations
199	Optimization of a phased-array transducer for multiple harmonic imaging in medical applications: frequency and topology. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 533-546.	3.0	18
200	Parametric array technique for microbubble excitation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 924-934.	3.0	7
201	Dual-pulse frequency compounded superharmonic imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 2316-2324.	3.0	11
202	Comparison of fundamental, second harmonic, and superharmonic imaging: A simulation study. Journal of the Acoustical Society of America, 2011, 130, 3148-3157.	1,1	31
203	Nonspherical Shape Oscillations of Coated Microbubbles inÂContact With a Wall. Ultrasound in Medicine and Biology, 2011, 37, 935-948.	1.5	65
204	Dynamics of Coated Microbubbles Adherent to a Wall. Ultrasound in Medicine and Biology, 2011, 37, 1500-1508.	1.5	59
205	Sonoporation of endothelial cells by vibrating targeted microbubbles. Journal of Controlled Release, 2011, 154, 35-41.	9.9	134
206	Second harmonic inversion for ultrasound contrast harmonic imaging. Physics in Medicine and Biology, 2011, 56, 3163-3180.	3.0	35
207	Automated analysis of three-dimensional stress echocardiography. Netherlands Heart Journal, 2011, 19, 307-310.	0.8	7
208	Re: Three-dimensional power Doppler: validity and reliability. Ultrasound in Obstetrics and Gynecology, 2011, 37, 620-621.	1.7	2
209	Reflector-based phase calibration of ultrasound transducers. Ultrasonics, 2011, 51, 1-6.	3.9	21
210	Characterization of Definityâ,,¢ Ultrasound Contrast Agent at Frequency Range of 5–15 MHz. Ultrasound in Medicine and Biology, 2011, 37, 338-342.	1.5	69
211	Left Ventricular Border Tracking Using Cardiac Motion Models and Optical Flow. Ultrasound in Medicine and Biology, 2011, 37, 605-616.	1.5	30
212	Characterizing the Subharmonic Response of Phospholipid-Coated Microbubbles for Carotid Imaging. Ultrasound in Medicine and Biology, 2011, 37, 958-970.	1.5	67
213	Sonoporation of endothelial cells in vivo. , 2011, , .		1
214	Combined optical and acoustical detection of single microbubble dynamics. Journal of the Acoustical Society of America, 2011, 130, 3271-3281.	1.1	37
215	Dynamic manipulation of the subharmonic scattering of phospholipid-coated microbubbles. Physics in Medicine and Biology, 2011, 56, 6459-6473.	3.0	25
216	A matrix transducer for 3D Transesophageal Echocardiography with a separate transmit and receive subarray. , $2011, \ldots$		5

#	Article	IF	CITATIONS
217	Nonlinear Contrast Intravascular Ultrasound. , 2011, , 137-152.		O
218	Probabilistic framework for tracking in artifact-prone 3D echocardiograms. Medical Image Analysis, 2010, 14, 750-758.	11.6	19
219	Increasing the Endothelial Layer Permeability Through Ultrasound-Activated Microbubbles. IEEE Transactions on Biomedical Engineering, 2010, 57, 29-32.	4.2	64
220	Ultrasound-mediated targeted microbubble sonoporation of endothelial cells. Journal of Controlled Release, 2010, 148, e62-e63.	9.9	6
221	Acoustic Sizing of an Ultrasound Contrast Agent. Ultrasound in Medicine and Biology, 2010, 36, 1713-1721.	1.5	20
222	Broadband Reduction of the Second Harmonic Distortion During Nonlinear Ultrasound Wave Propagation. Ultrasound in Medicine and Biology, 2010, 36, 1568-1580.	1.5	15
223	Nonlinear Shell Behavior of Phospholipid-Coated Microbubbles. Ultrasound in Medicine and Biology, 2010, 36, 2080-2092.	1.5	145
224	Contrast-enhanced intravascular ultrasound 3D reconstruction of a vasa vasorum mimicking model. , 2010, , .		2
225	Subharmonic spectroscopy of ultrasound contrast agents. , 2010, , .		2
226	Feasibility study of superharmonic imaging using chirps. Proceedings of Meetings on Acoustics, 2010, , .	0.3	1
227	Self-demodulation of high-frequency ultrasound. Journal of the Acoustical Society of America, 2010, 127, 1208-1217.	1.1	18
228	Artifact aware tracking of left ventricular contours in 3D ultrasound., 2010,,.		1
229	Microbubble shape oscillations excited through ultrasonic parametric driving. Physical Review E, 2010, 82, 026321.	2.1	127
230	Super-harmonic imaging: development of an interleaved phased-array transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 455-468.	3.0	59
231	Microbubble characterization through acoustically induced deflation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 193-202.	3.0	38
232	A matrix phased array system for 3D high frame-rate imaging of the carotid arteries. , 2010, , .		1
233	Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles. Journal of the Acoustical Society of America, 2010, 128, 3239-3252.	1.1	107
234	Lipid distribution and viscosity of coated microbubbles. , 2010, , .		5

#	Article	IF	Citations
235	Ultrasound Contrast Agent Microbubble Dynamics. , 2010, , 79-97.		5
236	Acoustic size distribution analyzer for microbubbles. , 2009, , .		1
237	Radial modulation of single microbubbles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 2370-2379.	3.0	33
238	Optical observations of microbubble oscillation in small tubes. , 2009, , .		3
239	Ultrasound and Microbubble-Targeted Delivery of Macromolecules Is Regulated by Induction of Endocytosis and Pore Formation. Circulation Research, 2009, 104, 679-687.	4.5	388
240	Tracking left ventricular borders in 3D echocardiographic sequences using motion-guided optical flow., 2009,,.		6
241	History force on coated microbubbles propelled by ultrasound. Physics of Fluids, 2009, 21, .	4.0	53
242	Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs. Journal of Controlled Release, 2009, 133, 109-118.	9.9	109
243	Ultrasonic characterization of ultrasound contrast agents. Medical and Biological Engineering and Computing, 2009, 47, 861-873.	2.8	155
244	Pressure-Dependent Attenuation and Scattering of Phospholipid-Coated Microbubbles at Low Acoustic Pressures. Ultrasound in Medicine and Biology, 2009, 35, 102-111.	1.5	59
245	A New Transesophageal Probe for Newborns. Ultrasound in Medicine and Biology, 2009, 35, 1686-1689.	1.5	9
246	Multilayer Transducer for Acoustic Bladder Volume Assessment on the Basis of Nonlinear Wave Propagation. Ultrasound in Medicine and Biology, 2009, 35, 1690-1699.	1.5	2
247	Sonoporation of endothelial cells with CD31-targeted microbubbles at low acoustic pressures. , 2009, , .		0
248	Tracking the endocardial border in artifact-prone 3D images. , 2009, , .		0
249	Angular spectrum method for the estimation of the lateral profile of the ultrasound pressure field of the third harmonic., 2009,,.		0
250	Pulse subtraction time delay imaging method for ultrasound contrast agent detection. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 1151-1158.	3.0	21
251	Contrast agent response to chirp reversal: simulations, optical observations, and acoustical verification. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 1199-1206.	3.0	26
252	Evaluation of the binding force between a biotinylated microbubble and a streptavidin-coated surface by ultrasound radiation. , $2009, , .$		0

#	Article	IF	Citations
253	Image quality using a micromultiplane transesophageal echocardiographic probe in older children during cardiac surgery. European Journal of Anaesthesiology, 2009, 26, 445-447.	1.7	8
254	10.1063/1.3227903.1., 2009,,.		2
255	Computation of three-dimensional, pulsed, nonlinear acoustic wavefields from medical phased array transducers in very large domains. Proceedings of Meetings on Acoustics, 2009, , .	0.3	4
256	Time Continuous Detection of the Left Ventricular Long Axis and the Mitral Valve Plane in 3-D Echocardiography. Ultrasound in Medicine and Biology, 2008, 34, 196-207.	1.5	31
257	Nonspherical Vibrations of Microbubbles in Contact with a Wall—A Pilot Study at Low Mechanical Index. Ultrasound in Medicine and Biology, 2008, 34, 685-688.	1.5	64
258	Nonspherical Oscillations of Ultrasound Contrast Agent Microbubbles. Ultrasound in Medicine and Biology, 2008, 34, 1465-1473.	1.5	129
259	Estimating Acoustic Peak Pressure Generated by Ultrasound Transducers from Harmonic Distortion Level Measurement. Ultrasound in Medicine and Biology, 2008, 34, 1528-1532.	1.5	8
260	Sparse Registration for Three-Dimensional Stress Echocardiography. IEEE Transactions on Medical Imaging, 2008, 27, 1568-1579.	8.9	24
261	Ultrasound-triggered local release of lipophilic drugs from a novel polymeric ultrasound contrast agent. Journal of Controlled Release, 2008, 132, e41-e42.	9.9	2
262	Pulse inversion sequences for mechanically scanned transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 2154-2163.	3.0	7
263	Oil-filled polymeric ultrasound contrast agent as local drug delivery system for lipophilic drugs. , 2008, , .		0
264	Ultrasound induced deflation: A method to study the behaviour of single bubbles with varying radius. , 2008, , .		1
265	Acoustic characterization of single ultrasound contrast agent microbubbles. Journal of the Acoustical Society of America, 2008, 124, 4091-4097.	1.1	51
266	The acceleration of solid particles subjected to cavitation nucleation. Journal of Fluid Mechanics, 2008, 610, 157-182.	3.4	88
267	Generation of a Droplet Inside a Microbubble with the Aid of an Ultrasound Contrast Agent: First Result. Letters in Drug Design and Discovery, 2007, 4, 74-77.	0.7	19
268	Robust intravascular optical coherence elastography by line correlations. Physics in Medicine and Biology, 2007, 52, 2445-2458.	3.0	52
269	Radial Modulation of Microbubbles for Ultrasound Contrast Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2283-2290.	3.0	49
270	Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging. Applied Physics Letters, 2007, 90, .	3.3	166

#	Article	IF	CITATIONS
271	Microbubble spectroscopy of ultrasound contrast agents. Journal of the Acoustical Society of America, 2007, 121, 648-656.	1.1	312
272	Efficient Quantification of the Left Ventricular Volume Using 3-Dimensional Echocardiography: The Minimal Number of Equiangular Long-axis Images for Accurate Quantification of the Left Ventricular Volume. Journal of the American Society of Echocardiography, 2007, 20, 373-380.	2.8	7
273	Drug Delivery to Extravascular Tissue by Ultrasound-activated Microbubbles. AIP Conference Proceedings, 2007, , .	0.4	O
274	Transfer functions of US transducers for harmonic imaging and bubble responses. Ultrasonics, 2007, 46, 336-340.	3.9	26
275	WFUMB safety symposium on echo-contrast agents: Nature and types of ultrasound contrast agents. Ultrasound in Medicine and Biology, 2007, 33, 187-196.	1.5	78
276	"Compression-Only―Behavior of Phospholipid-Coated Contrast Bubbles. Ultrasound in Medicine and Biology, 2007, 33, 653-656.	1.5	168
277	Attenuation and Size Distribution Measurements of Definityâ,,¢ and Manipulated Definityâ,,¢ Populations. Ultrasound in Medicine and Biology, 2007, 33, 1376-1388.	1.5	225
278	Subharmonic Contrast Intravascular Ultrasound for Vasa Vasorum Imaging. Ultrasound in Medicine and Biology, 2007, 33, 1859-1872.	1.5	136
279	The Onset of Microbubble Vibration. Ultrasound in Medicine and Biology, 2007, 33, 941-949.	1.5	129
280	Automated Tracking of the Mitral Valve Annulus Motion in Apical Echocardiographic Images Using Multidimensional Dynamic Programming. Ultrasound in Medicine and Biology, 2007, 33, 1389-1399.	1.5	28
281	Vasa vasorum and molecular imaging of atherosclerotic plaques using nonlinear contrast intravascular ultrasound. Netherlands Heart Journal, 2007, 15, 77-80.	0.8	15
282	Clinical relevance of pressure-dependent scattering at low acoustic pressures. Ultrasonics, 2007, 47, 74-77.	3.9	8
283	Caractéristiques physiques des agents de contraste. , 2007, , 17-23.		O
284	Dynamique de la microbulle. , 2007, , 25-43.		0
285	INTRAVASCULAR IMAGING., 2007,, 241-251.		O
286	Time-resolved nanoseconds dynamics of ultrasound contrast agent microbubbles manipulated and controlled by optical tweezers. , 2006, , .		2
287	Harmonic 3-D echocardiography with a fast-rotating ultrasound transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1739-1748.	3.0	17
288	Sonoporation from Jetting Cavitation Bubbles. Biophysical Journal, 2006, 91, 4285-4295.	0.5	420

#	Article	IF	CITATIONS
289	Contrast Harmonic Intravascular Ultrasound. Investigative Radiology, 2006, 41, 631-638.	6.2	105
290	Rapid and Accurate Measurement of Left Ventricular Function with a New Second-Harmonic Fast-Rotating Transducer and Semi-Automated Border Detection. Echocardiography, 2006, 23, 447-454.	0.9	13
291	Nitric oxide delivery by ultrasonic cracking: Some limitations. Ultrasonics, 2006, 44, e109-e113.	3.9	27
292	High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent. Ultrasound in Medicine and Biology, 2006, 32, 569-577.	1.5	51
293	High-speed imaging of an ultrasound-driven bubble in contact with a wall: "Narcissus―effect and resolved acoustic streaming. Experiments in Fluids, 2006, 41, 147-153.	2.4	81
294	Detecting broken struts of a Bj×rk-Shiley heart valve using ultrasound: A feasibility study. Ultrasound in Medicine and Biology, 2006, 32, 503-512.	1.5	2
295	Nonlinear intravascular ultrasound contrast imaging. Ultrasound in Medicine and Biology, 2006, 32, 491-502.	1.5	85
296	Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation. Journal of Controlled Release, 2006, 112, 149-155.	9.9	529
297	Ultrasound microbubble induced endothelial cell permeability. Journal of Controlled Release, 2006, 116, e100-e102.	9.9	39
298	Nonlinear behavior of ultrasound-insonified encapsulated microbubbles. AIP Conference Proceedings, 2006, , .	0.4	1
299	Microbubbles Reforming Endothelium. AIP Conference Proceedings, 2006, , .	0.4	0
300	Design of a Multilayer Transducer for Acoustic Bladder Volume Assessment. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1730-1738.	3.0	25
301	Low back pain, the stiffness of the sacroiliac joint: A new method using ultrasound. Ultrasound in Medicine and Biology, 2005, 31, 39-44.	1.5	21
302	Multifrequency Transducer for Microemboli Classification and Sizing. IEEE Transactions on Biomedical Engineering, 2005, 52, 2087-2092.	4.2	10
303	High-speed optical observations of contrast agent destruction. Ultrasound in Medicine and Biology, 2005, 31, 391-399.	1.5	184
304	High Speed Optical observations of Contrast Agent dynamics and Breakage. AIP Conference Proceedings, 2005, , .	0.4	3
305	Transducer for harmonic intravascular ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 2418-2422.	3.0	42
306	Intracardiac echocardiography guidance during percutaneous transluminal septal myocardial ablation in patients with obstructive hypertrophic cardiomyopathy. International Journal of Cardiovascular Interventions, 2005, 7, 134-137.	0.5	21

#	Article	IF	Citations
307	High-speed photography during ultrasound illustrates potential therapeutic applications of microbubbles. Medical Physics, 2005, 32, 3707-3711.	3.0	85
308	Left Ventricular Volume Estimation in Cardiac Three-dimensional Ultrasound. Academic Radiology, 2005, 12, 1241-1249.	2.5	24
309	Ultrasound-induced gas release from contrast agent microbubbles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1035-1041.	3.0	59
310	Optical observations of acoustical radiation force effects on individual air bubbles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 104-110.	3.0	38
311	Harmonic chirp imaging method for ultrasound contrast agent. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 241-249.	3.0	93
312	A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. Journal of the Acoustical Society of America, 2005, 118, 3499-3505.	1.1	587
313	A new ultrasonic transducer for improved contrast nonlinear imaging. Physics in Medicine and Biology, 2004, 49, 3515-3525.	3.0	37
314	Guiding and optimization of resynchronization therapy with dynamic three-dimensional echocardiography and segmental volume-time curves: a feasibility study. European Journal of Heart Failure, 2004, 6, 619-625.	7.1	39
315	Early, recent and future applications of echocardiography*. Clinical Physiology and Functional Imaging, 2004, 24, 141-146.	1.2	6
316	Experimental evaluation of a non-linear coded excitation method for contrast imaging. Ultrasonics, 2004, 42, 671-675.	3.9	23
317	Radionuclide tumour therapy with ultrasound contrast microbubbles. Ultrasonics, 2004, 42, 903-906.	3.9	51
318	Noninvasive microbubble-based pressure measurements: a simulation study. Ultrasonics, 2004, 42, 759-762.	3.9	30
319	Feasibility of 3D harmonic contrast imaging. Ultrasonics, 2004, 42, 739-743.	3.9	4
320	Emboli detection using a new transducer design. Ultrasound in Medicine and Biology, 2004, 30, 123-126.	1.5	6
321	Ultrasound-induced encapsulated microbubble phenomena. Ultrasound in Medicine and Biology, 2004, 30, 827-840.	1.5	256
322	Contrast harmonic transesophageal echocardiography: A feasibility study. Ultrasound in Medicine and Biology, 2004, 30, 877-883.	1.5	3
323	Micromanipulation of endothelial cells: Ultrasound-microbubble-cell interaction. Ultrasound in Medicine and Biology, 2004, 30, 1255-1258.	1.5	135
324	Ultrasound-induced microbubble coalescence. Ultrasound in Medicine and Biology, 2004, 30, 1337-1344.	1.5	99

#	Article	IF	CITATIONS
325	A Semi-automatic Endocardial Border Detection Method for 4D Ultrasound Data. Lecture Notes in Computer Science, 2004, , 43-50.	1.3	1
326	Nonlinear coded excitation method for ultrasound contrast imaging. Ultrasound in Medicine and Biology, 2003, 29, 277-284.	1.5	71
327	Subharmonic and ultraharmonic emissions for emboli detection and characterization. Ultrasound in Medicine and Biology, 2003, 29, 417-425.	1.5	26
328	Contrast superharmonic imaging: A feasibility study. Ultrasound in Medicine and Biology, 2003, 29, 547-553.	1.5	84
329	Visualization of myocardial perfusion after percutaneous myocardial septal ablation for hypertrophic cardiomyopathy using superharmonic imaging. Journal of the American Society of Echocardiography, 2003, 16, 370-372.	2.8	5
330	Harmonic ultrasonic field of medical phased arrays: simulations and measurements. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50, 730-735.	3.0	25
331	Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames. Review of Scientific Instruments, 2003, 74, 5026-5034.	1.3	204
332	Production of standardized air bubbles: Application to embolism studies. Review of Scientific Instruments, 2003, 74, 2558-2563.	1.3	19
333	Brandaris 128: a rotating-mirror digital camera with 128 frames at 25 Mfps. , 2003, 4948, 342.		8
334	Basic Acoustic Properties of Microbubbles. Echocardiography, 2002, 19, 229-240.	0.9	237
		0.9	
335	Super harmonic imaging: a new imaging technique for improved contrast detection. Ultrasound in Medicine and Biology, 2002, 28, 59-68.	1.5	205
335 336	Super harmonic imaging: a new imaging technique for improved contrast detection. Ultrasound in Medicine and Biology, 2002, 28, 59-68. Contrast harmonic imaging. Ultrasonics, 2002, 40, 567-573.		205 81
	Medicine and Biology, 2002, 28, 59-68.	1.5	
336	Medicine and Biology, 2002, 28, 59-68. Contrast harmonic imaging. Ultrasonics, 2002, 40, 567-573.	1.5 3.9	81
336 337	Medicine and Biology, 2002, 28, 59-68. Contrast harmonic imaging. Ultrasonics, 2002, 40, 567-573. Improved contrast to tissue ratio at higher harmonics. Ultrasonics, 2002, 40, 575-578. New technique for emboli detection and discrimination based on nonlinear characteristics of gas	1.5 3.9 3.9	81
336 337 338	Medicine and Biology, 2002, 28, 59-68. Contrast harmonic imaging. Ultrasonics, 2002, 40, 567-573. Improved contrast to tissue ratio at higher harmonics. Ultrasonics, 2002, 40, 575-578. New technique for emboli detection and discrimination based on nonlinear characteristics of gas bubbles. Ultrasound in Medicine and Biology, 2001, 27, 801-808. Usefulness of power Doppler contrast echocardiography to identify reperfusion after acute	1.5 3.9 3.9	81 26 22
336 337 338	Medicine and Biology, 2002, 28, 59-68. Contrast harmonic imaging. Ultrasonics, 2002, 40, 567-573. Improved contrast to tissue ratio at higher harmonics. Ultrasonics, 2002, 40, 575-578. New technique for emboli detection and discrimination based on nonlinear characteristics of gas bubbles. Ultrasound in Medicine and Biology, 2001, 27, 801-808. Usefulness of power Doppler contrast echocardiography to identify reperfusion after acute myocardial infarction. American Journal of Cardiology, 2001, 87, 278-282.	1.5 3.9 3.9 1.5	26 22 46

#	Article	IF	Citations
343	Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound in Medicine and Biology, 2000, 26, 487-492.	1.5	110
344	Ultrasound imaging based on nonlinear pressure field properties. AIP Conference Proceedings, 2000, , .	0.4	1
345	Scattering properties of encapsulated gas bubbles at high ultrasound pressures. Journal of the Acoustical Society of America, 1999, 105, 1989-1996.	1.1	74
346	Noninvasive measurement of the hydrostatic pressure in a fluid-filled cavity based on the disappearance time of micrometer-sized free gas bubbles. Ultrasound in Medicine and Biology, 1999, 25, 1407-1415.	1.5	89
347	Comparison of native and contrast-enhanced harmonic echocardiography for visualization of left ventricular endocardial border. American Journal of Cardiology, 1999, 83, 211-217.	1.6	112
348	Effect of harmonic imaging without contrast on image quality of transesophageal echocardiography. American Journal of Cardiology, 1999, 84, 1132-1134.	1.6	10
349	Effect of ultrasound on the release of micro-encapsulated drugs. Ultrasonics, 1998, 36, 709-712.	3.9	31
350	On the effect of lung filtering and cardiac pressure on the standard properties of ultrasound contrast agent. Ultrasonics, 1998, 36, 703-708.	3.9	46
351	Standard Properties of Ultrasound Contrast Agents. Ultrasound in Medicine and Biology, 1998, 24, 469-472.	1.5	67
352	Acoustic Modeling of Shell-Encapsulated Gas Bubbles. Ultrasound in Medicine and Biology, 1998, 24, 523-533.	1.5	155
353	New ultrasound contrast agents and technological innovations. Ultrasonics, 1996, 34, 587-590.	3.9	53
354	Higher harmonics of vibrating gas-filled microspheres. Part one: simulations. Ultrasonics, 1994, 32, 447-453.	3.9	335
355	Higher harmonics of vibrating gas-filled microspheres. Part two: measurements. Ultrasonics, 1994, 32, 455-459.	3.9	168
356	Ultrasound scattering properties of Albunex microspheres. Ultrasonics, 1993, 31, 175-181.	3.9	263
357	Quantification of transpulmonary echocontrast effects. Ultrasound in Medicine and Biology, 1993, 19, 279-288.	1.5	39
358	Absorption and scatter of encapsulated gas filled microspheres: Theoretical considerations and some measurements. Ultrasonics, 1992, 30, 95-103.	3.9	458
359	Intraoperative Epicardial Echocardiography: Early Experience With a Newly Developed Small Surgical Transducer. Journal of the American Society of Echocardiography, 1991, 4, 147-154.	2.8	6
360	Principles and recent developments in ultrasound contrast agents. Ultrasonics, 1991, 29, 324-330.	3.9	240

#	Article	IF	CITATIONS
361	A Computerized System That Uses High-frequency Data for Analysis of Myocardial Contrast Echocardiograms. Journal of the American Society of Echocardiography, 1990, 3, 99-105.	2.8	5
362	Transesophageal doppler color flow imaging in the detection of native and Bj \tilde{A} ¶rk-Shiley mitral valve regurgitation. Journal of the American College of Cardiology, 1989, 13, 95-99.	2.8	112
363	The Value of transoesophageal echocardiography for diagnosis of thoracic aorta pathology. European Heart Journal, 1988, 9, 1308-1316.	2.2	67
364	Myocardial Contrast Two-Dimensional Echocardiography: Initial Observations during Cardiac Catheterization. American Journal of Noninvasive Cardiology, 1988, 2, 238-243.	0.1	1
365	A multiwire saw for the production of ultrasound transducers. Journal of Physics E: Scientific Instruments, 1987, 20, 1457-1461.	0.7	3
366	Detailed analysis of aortic valve endocarditis: Comparison of precordial, esophageal and epicardial two-dimensional echocardiography with surgical findings. Journal of Clinical Ultrasound, 1986, 14, 209-211.	0.8	26
367	Transducers in medical ultrasound. Part 4: transducer safety. Ultrasonics, 1986, 24, 230-232.	3.9	7