List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1869639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of sex differences in dietary copper-fructose interaction-induced alterations of gut microbial activity in relation to hepatic steatosis. Biology of Sex Differences, 2021, 12, 3.	1.8	7
2	Effect of Epidermal Growth Factor Treatment and Polychlorinated Biphenyl Exposure in a Dietary-Exposure Mouse Model of Steatohepatitis. Environmental Health Perspectives, 2021, 129, 37010.	2.8	7
3	Plasma Metabolomics Analysis of Polyvinyl Chloride Workers Identifies Altered Processes and Candidate Biomarkers for Hepatic Hemangiosarcoma and Its Development. International Journal of Molecular Sciences, 2021, 22, 5093.	1.8	2
4	Proteomics and metabolic phenotyping define principal roles for the aryl hydrocarbon receptor in mouse liver. Acta Pharmaceutica Sinica B, 2021, 11, 3806-3819.	5.7	17
5	Hepatic Injury Caused by the Environmental Toxicant Vinyl Chloride is Sex-Dependent in Mice. Toxicological Sciences, 2020, 174, 79-91.	1.4	9
6	Dioxin-like and non-dioxin-like PCBs differentially regulate the hepatic proteome and modify diet-induced nonalcoholic fatty liver disease severity. Medicinal Chemistry Research, 2020, 29, 1247-1263.	1.1	25
7	Identifying sex differences arising from polychlorinated biphenyl exposures in toxicant-associated liver disease. Food and Chemical Toxicology, 2019, 129, 64-76.	1.8	25
8	Mechanisms of Environmental Contributions to Fatty Liver Disease. Current Environmental Health Reports, 2019, 6, 80-94.	3.2	86
9	Proteomic Analysis Reveals Novel Mechanisms by Which Polychlorinated Biphenyls Compromise the Liver Promoting Diet-Induced Steatohepatitis. Journal of Proteome Research, 2019, 18, 1582-1594.	1.8	19
10	Polychlorinated biphenyl exposures differentially regulate hepatic metabolism and pancreatic function: Implications for nonalcoholic steatohepatitis and diabetes. Toxicology and Applied Pharmacology, 2019, 363, 22-33.	1.3	47
11	Hepatic signalling disruption by pollutant Polychlorinated biphenyls in steatohepatitis. Cellular Signalling, 2019, 53, 132-139.	1.7	15
12	Epidermal Growth Factor Receptor Signaling Disruption by Endocrine and Metabolic Disrupting Chemicals. Toxicological Sciences, 2018, 162, 622-634.	1.4	40
13	Dietary copper-fructose interactions alter gut microbial activity in male rats. American Journal of Physiology - Renal Physiology, 2018, 314, G119-G130.	1.6	37
14	Ethanol and unsaturated dietary fat induce unique patterns of hepatic ï‰-6 and ï‰-3 PUFA oxylipins in a mouse model of alcoholic liver disease. PLoS ONE, 2018, 13, e0204119.	1.1	25
15	Liver Disease in a Residential Cohort With Elevated Polychlorinated Biphenyl Exposures. Toxicological Sciences, 2018, 164, 39-49.	1.4	52
16	Mechanisms of Action of Dehydroepiandrosterone. Vitamins and Hormones, 2018, 108, 29-73.	0.7	32
17	Dehydroepiandrosterone Research: Past, Current, and Future. Vitamins and Hormones, 2018, 108, 1-28.	0.7	59
18	Polychlorinated biphenyls disrupt hepatic epidermal growth factor receptor signaling. Xenobiotica, 2017, 47, 807-820.	0.5	28

2

RUSSELL A PROUGH

#	Article	IF	CITATIONS
19	Chronic Alcohol Consumption Causes Liver Injury in High-Fructose-Fed Male Mice Through Enhanced Hepatic Inflammatory Response. Alcoholism: Clinical and Experimental Research, 2016, 40, 518-528.	1.4	26
20	Novel mechanisms for DHEA action. Journal of Molecular Endocrinology, 2016, 56, R139-R155.	1.1	126
21	Nuclear receptors and nonalcoholic fatty liver disease. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1083-1099.	0.9	223
22	Polychlorinated Biphenyl-Xenobiotic Nuclear Receptor Interactions Regulate Energy Metabolism, Behavior, and Inflammation in Non-alcoholic-Steatohepatitis. Toxicological Sciences, 2016, 149, 396-410.	1.4	56
23	Role of Cytochrome P450 Monooxygenase in Carcinogen and Chemotherapeutic Drug Metabolism. Advances in Pharmacology, 2015, 74, 1-33.	1.2	25
24	Genetic Deficiency of Glutathione <i>S</i> -Transferase P Increases Myocardial Sensitivity to Ischemia–Reperfusion Injury. Circulation Research, 2015, 117, 437-449.	2.0	34
25	Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice. Toxicology and Applied Pharmacology, 2015, 285, 136-148.	1.3	36
26	Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells. Journal of Biological Chemistry, 2015, 290, 15799-15811.	1.6	47
27	Differential 12- <i>O</i> -Tetradecanoylphorbol-13-acetate-induced activation of rat mammary carcinoma susceptibility <i>Fbxo10</i> variant promoters via a PKC-AP1 pathway. Molecular Carcinogenesis, 2015, 54, 134-147.	1.3	4
28	Regulation of Human CYP2C9 Expression by Electrophilic Stress Involves Activator Protein 1 Activation and DNA Looping. Molecular Pharmacology, 2014, 86, 125-137.	1.0	11
29	Human Receptor Activation by Aroclor 1260, a Polychlorinated Biphenyl Mixture. Toxicological Sciences, 2014, 140, 283-297.	1.4	81
30	Human MCS5A1 candidate breast cancer susceptibility gene FBXO10 is induced by cellular stress and correlated with lens epithelium-derived growth factor (LEDGF). Molecular Carcinogenesis, 2014, 53, 300-313.	1.3	20
31	Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease. Toxicology and Applied Pharmacology, 2014, 279, 380-390.	1.3	85
32	Dehydroepiandrosterone-induces miR-21 transcription in HepG2 cells through estrogen receptor β and androgen receptor. Molecular and Cellular Endocrinology, 2014, 392, 23-36.	1.6	27
33	DHEA metabolites activate estrogen receptors alpha and beta. Steroids, 2013, 78, 15-25.	0.8	63
34	Metabolomic Analysis of the Effects of Polychlorinated Biphenyls in Nonalcoholic Fatty Liver Disease. Journal of Proteome Research, 2012, 11, 3805-3815.	1.8	54
35	Cytochromes P450 Catalyze the Reduction of \hat{I}_{\pm}, \hat{I}^2 -Unsaturated Aldehydes. Chemical Research in Toxicology, 2011, 24, 1223-1230.	1.7	30
36	Aldehyde Reduction by Cytochrome P450. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2011, 48, Unit4.37.	1.1	5

#	Article	IF	CITATIONS
37	Murine hepatic aldehyde dehydrogenase 1a1 is a major contributor to oxidation of aldehydes formed by lipid peroxidation. Chemico-Biological Interactions, 2011, 191, 278-287.	1.7	44
38	Role of xenobiotic metabolism in cancer: involvement of transcriptional and miRNA regulation of P450s. Cellular and Molecular Life Sciences, 2011, 68, 1131-1146.	2.4	41
39	Acroleinâ€induced dyslipidemia and acuteâ€phase response are independent of HMG oA reductase. Molecular Nutrition and Food Research, 2011, 55, 1411-1422.	1.5	18
40	Acrolein consumption induces systemic dyslipidemia and lipoprotein modification. Toxicology and Applied Pharmacology, 2010, 243, 1-12.	1.3	74
41	MicroRNA group disorganization in aging. Experimental Gerontology, 2010, 45, 269-278.	1.2	39
42	Increased Sensitivity of Glutathione <i>S</i> -Transferase P-Null Mice to Cyclophosphamide-Induced Urinary Bladder Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 456-469.	1.3	47
43	Glutathione- <i>S</i> -transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1586-H1597.	1.5	98
44	Modulation of Receptor Phosphorylation Contributes to Activation of Peroxisome Proliferator Activated Receptor α by Dehydroepiandrosterone and Other Peroxisome Proliferators. Molecular Pharmacology, 2008, 73, 968-976.	1.0	32
45	Regulation of the Rat Glutathione S-Transferase A2 Gene by Glucocorticoids: Crosstalk Through C/EBPs. Drug Metabolism Reviews, 2007, 39, 401-418.	1.5	7
46	Dehydroepiandrosterone Induces Human CYP2B6 through the Constitutive Androstane Receptor. Drug Metabolism and Disposition, 2007, 35, 1495-1501.	1.7	51
47	Cytochromes P450 catalyze oxidation of $\hat{I}\pm,\hat{I}^2$ -unsaturated aldehydes. Archives of Biochemistry and Biophysics, 2007, 464, 187-196.	1.4	29
48	Aldehydemetabolism in the cardiovascular system. Molecular BioSystems, 2007, 3, 136-150.	2.9	63
49	The Biological Actions of Dehydroepiandrosterone Involves Multiple Receptors. Drug Metabolism Reviews, 2006, 38, 89-116.	1.5	201
50	Site Directed Mutagenesis of PPARalpha Phosphorylation Sites S6, S12 and S21. FASEB Journal, 2006, 20, A525.	0.2	0
51	The effect of synthetic glucocorticoid, dexamethasone on CYP1A1 inducibility in adult rat and human hepatocytes. FEBS Letters, 2005, 579, 229-235.	1.3	51
52	Interactions between dehydroepiandrosterone and glucocorticoid metabolism in pig kidney: Nuclear and microsomal 11β-hydroxysteroid dehydrogenases. Archives of Biochemistry and Biophysics, 2005, 442, 33-40.	1.4	15
53	TRANSCRIPTIONAL SUPPRESSION OF CYTOCHROME P450 GENES BY ENDOGENOUS AND EXOGENOUS CHEMICALS. Drug Metabolism and Disposition, 2004, 32, 367-375.	1.7	86
54	STEREO- AND REGIOSELECTIVITY ACCOUNT FOR THE DIVERSITY OF DEHYDROEPIANDROSTERONE (DHEA) METABOLITES PRODUCED BY LIVER MICROSOMAL CYTOCHROMES P450. Drug Metabolism and Disposition, 2004, 32, 305-313.	1.7	64

4

#	Article	IF	CITATIONS
55	Biosynthesis of [3H]7α-hydroxy-, 7β-hydroxy-, and 7-oxo-dehydroepiandrosterone using pig liver microsomal fractions. Analytical Biochemistry, 2004, 333, 128-135.	1.1	9
56	Glucocorticoids inhibit interconversion of 7-hydroxy and 7-oxo metabolites of dehydroepiandrosterone: a role for 11β-hydroxysteroid dehydrogenases?. Archives of Biochemistry and Biophysics, 2003, 412, 251-258.	1.4	67
57	Regulation of CYP2C11 by Dehydroepiandrosterone and Peroxisome Proliferators: Identification of the Negative Regulatory Region of the Gene. Molecular Pharmacology, 2003, 64, 113-122.	1.0	28
58	Dehydroepiandrosterone Affects the Expression of Multiple Genes in Rat Liver Including 11β-Hydroxysteroid Dehydrogenase Type 1: A cDNA Array Analysis. Molecular Pharmacology, 2003, 63, 722-731.	1.0	34
59	Induction ofCYP3AExpression by Dehydroepiandrosterone: Involvement of the Pregnane X Receptor. Drug Metabolism and Disposition, 2002, 30, 570-575.	1.7	63
60	Metabolism of DHEA by Cytochromes P450 in Rat and Human Liver Microsomal Fractions. Archives of Biochemistry and Biophysics, 2001, 389, 278-287.	1.4	56
61	Short Heterodimer Partner (SHP) Orphan Nuclear Receptor Inhibits the Transcriptional Activity of Aryl Hydrocarbon Receptor (AHR)/AHR Nuclear Translocator (ARNT). Archives of Biochemistry and Biophysics, 2001, 390, 64-70.	1.4	51
62	7,12-Dimethylbenz[a]anthracene Inhibition of Steroid Production in MA-10 Mouse Leydig Tumor Cells Is Not Directly Linked to Induction of CYP1B1. Toxicology and Applied Pharmacology, 2001, 175, 200-208.	1.3	26
63	Negative Regulation of Rat Hepatic Aldehyde Dehydrogenase 3 by Glucocorticoids. Advances in Experimental Medicine and Biology, 1999, 463, 159-164.	0.8	7
64	Modulation of Class 3 Aldehyde Dehydrogenase Gene Expression. Advances in Experimental Medicine and Biology, 1999, 463, 165-170.	0.8	2
65	Purification and Characterization of Hamster Liver Microsomal 7α-Hydroxycholesterol Dehydrogenase. Journal of Biological Chemistry, 1998, 273, 16223-16228.	1.6	37
66	cAMP-dependent Negative Regulation of Rat Aldehyde Dehydrogenase Class 3 Gene Expression. Journal of Biological Chemistry, 1997, 272, 3238-3245.	1.6	21
67	Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clinical Chemistry, 1997, 43, 254-266.	1.5	153
68	Introduction: Basal and inducible expression of cytochromes P450 and related enzymes. FASEB Journal, 1996, 10, 807-808.	0.2	9
69	Regulation of Rat ALDH-3 by Hepatic Protein Kinases and Glucocorticoids. Advances in Experimental Medicine and Biology, 1996, 414, 29-36.	0.8	3
70	Characteristics of cholesterol 7α-hydroxylase and 7α-hydroxycholesterol hydroxylase activities of rodent liver. Biochemical Pharmacology, 1991, 41, 1439-1447.	2.0	12
71	Inhibition of carbamoyl phosphate synthetase-I by dietary dehydroepiandrosterone. Journal of Steroid Biochemistry and Molecular Biology, 1991, 38, 599-609.	1.2	10
72	Dehydroepiandrosterone Feeding and Protein Phosphorylation, Phosphatases, and Lipogenic Enzymes in Mouse Liver. Experimental Biology and Medicine, 1990, 193, 110-117.	1.1	13

#	Article	IF	CITATIONS
73	Peroxisome proliferation and induction of peroxisomal enzymes in mouse and rat liver by dehydroepiandrosterone feeding. The Journal of Steroid Biochemistry, 1990, 35, 333-342.	1.3	91
74	Enhanced decomposition of oxyferrous cytochrome P450CIA1 (P450cam) by the chemopreventive agent 3-t-butyl-4-hydroxyanisole. Archives of Biochemistry and Biophysics, 1990, 276, 500-509.	1.4	6
75	Glucocorticoid regulation of the rat cytochrome P450c (P450IA1) gene: Receptor binding within intron I. Archives of Biochemistry and Biophysics, 1989, 269, 93-105.	1.4	74
76	Effects of induction on the metabolism and cytochrome P-450 binding of harman and other β-carbolines. Xenobiotica, 1988, 18, 785-796.	0.5	17
77	Hormonal regulation of the xenobiotic metabolizing enzymes. Molecular and Cellular Endocrinology, 1988, 60, 105-108.	1.6	4
78	Metabolism of hydrazine anti-cancer agents. , 1987, 34, 111-127.		27
79	Regulation of cytochrome P-450c by glucocorticoids and polycyclic aromatic hydrocarbons in cultured fetal rat hepatocytes. Archives of Biochemistry and Biophysics, 1986, 246, 439-448.	1.4	48
80	Synergistic induction of monooxygenase activity by glucocorticoids and polycyclic aromatic hydrocarbons in human fetal hepatocytes in primary monolayer culture. Archives of Biochemistry and Biophysics, 1986, 244, 650-661.	1.4	33
81	Oxidative metabolism of some hydrazine derivatives by rat liver and lung tissue fractions. Journal of Biochemical Toxicology, 1986, 1, 41-52.	0.5	8
82	Cytochrome P-450 Reductase and Cytochrome b5 in Cytochrome P-450 Catalysis. , 1986, , 89-117.		32
83	The Responses of Glutathione and Antioxidant Enzymes to Hyperoxia in Developing Lung. Pediatric Research, 1985, 19, 819-823.	1.1	55
84	Metabolic activation of the terminal N-methyl group of N-isopropyl-α-(2-methylhydrazino)-p-toluamide hydrochloride (procarbazine). Carcinogenesis, 1985, 6, 397-401.	1.3	20
85	Novel glutathione conjugates formed from epoxyeicosatrienoic acids (EETs). Archives of Biochemistry and Biophysics, 1985, 242, 225-230.	1.4	71
86	Cytosol-mediated reduction of resorufin: A method for measuring quinone oxidoreductase. Archives of Biochemistry and Biophysics, 1984, 229, 459-465.	1.4	64
87	Inhibition of Polymorphonuclear Leukocytes by C3 Split Products in Burned Patients. Journal of Burn Care and Research, 1984, 5, 365-372.	1.7	2
88	Metabolic Formation of Toxic Metabolites. , 1983, , 1-30.		13
89	Inhibition of metabolism-mediated cytotoxicity by 1,1-disubstituted hydrazines in mouse mastocytoma (line p815) cells. Biochemical Pharmacology, 1982, 31, 2921-2928.	2.0	4
90	The metabolism and toxicity of some organotin compounds in isolated rat hepatocytes. Toxicology and Applied Pharmacology, 1982, 62, 409-420.	1.3	26

#	Article	IF	CITATIONS
91	Monooxygenase Activities of Human Liver, Lung, and Kidney Microsomes – A Study of 42 <i>post mortem</i> Cases. Acta Pharmacologica Et Toxicologica, 1982, 50, 332-341.	0.0	18
92	The metabolism of benzo[a]pyrene phenols by rat liver microsomal fractions. Archives of Biochemistry and Biophysics, 1981, 212, 136-146.	1.4	15
93	Hydrogen peroxide-supported oxidation of benzo [a]pyrene by rat liver microsomal fractions. Biochemical Pharmacology, 1981, 30, 843-848.	2.0	32
94	[6] Measurement of tissue vitamin B12 by radioisotopic competitive inhibition assay and quantitation of tissue cobalamin fractions. Methods in Enzymology, 1980, 67, 31-40.	0.4	22
95	Metabolic Activation of Benzo[<i>a</i>]pyrene and 9-Hydroxybenzo[<i>a</i>]pyrene by Tissue Fractions from Rat Liver and Lung. Biochemical Society Transactions, 1979, 7, 122-124.	1.6	2
96	High-performance liquid chromatographic separation of cobalamins. Journal of Chromatography A, 1979, 174, 393-400.	1.8	28
97	Lauric acid hydroxylation in human liver and kidney cortex microsomes. Biochemical Pharmacology, 1979, 28, 3385-3390.	2.0	26
98	The microsomal metabolism of benzo(a)pyrene phenols. Biochemical and Biophysical Research Communications, 1978, 82, 518-525.	1.0	24
99	The existence of a benzo(a)pyrene-3,6-quinone reductase in rat liver microsomal fractions. Biochemical and Biophysical Research Communications, 1978, 83, 1291-1298.	1.0	40
100	[42] Fluorometric and chromatographic methods for measuring microsomal biphenyl hydroxylation. Methods in Enzymology, 1978, 52, 399-407.	0.4	9
101	The Role of Cytochrome P-450 and the Microsomal Electron Transport System: The Oxidative Metabolism of Benzo[a]pyrene. , 1978, , 285-319.		6
102	Initiation of Human Parturition. VI. Identification and Quantification of Progesterone Metabolites Produced by the Components of Human Fetal Membranes. Journal of Clinical Endocrinology and Metabolism, 1977, 45, 400-411.	1.8	28
103	Purification and characterization of NADPH-cytochrome reductase from the house fly, Musca domestica. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1977, 57, 81-87.	0.2	7
104	The relative participation of liver microsomal amine oxidase and cytochrome P-450 in N-demethylation reactions. Archives of Biochemistry and Biophysics, 1977, 180, 363-373.	1.4	134
105	Methoxyresorufin as a substrate for the fluorometric assay of insect microsomal O-dealkylases. Pesticide Biochemistry and Physiology, 1977, 7, 349-354.	1.6	110
106	Assay of underivatized biphenyl metabolites by high-pressure liquid chromatography. Analytical Biochemistry, 1977, 83, 466-473.	1.1	18
107	THE MICROSOMAL METABOLISM OF CARCINOGENIC AND/OR THERAPEUTIC HYDRAZINES. , 1977, , 500-507.		6
108	Characterization of a metabolite-cytochrome P-450 complex derived from the aerobic metabolism of an insect juvenile hormone analog by rat microsomal fractions. Toxicology and Applied Pharmacology, 1976, 38, 439-454.	1.3	7

RUSSELL A PROUGH

#	Article	IF	CITATIONS
109	Studies on methemoglobin reductase. Archives of Biochemistry and Biophysics, 1976, 172, 600-607.	1.4	61
110	NADH-cytochrome c reductase activity in cultured human lymphocytes. Archives of Biochemistry and Biophysics, 1976, 176, 119-126.	1.4	13
111	Some characteristics of hamster liver and lung microsomal aryl hydrocarbon (biphenyl and) Tj ETQq1 1 0.784314	rgBT /Ove 2.0	erlggk 10 Tf 5
112	Microsomal lauric acid 11- and 12-hydroxylation: A new assay method utilizing high pressure liquid chromatography. Analytical Biochemistry, 1976, 71, 265-272.	1.1	15
113	Properties of the stable aerobic and anaerobic half-reduced states of NADPH-cytochrome c reductase. Biochemistry, 1975, 14, 607-613.	1.2	67
114	The mechanism of cytochrome b5 reduction by NADPH-cytochrome c reductase. Archives of Biochemistry and Biophysics, 1974, 165, 263-267.	1.4	27
115	Reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase and cytochrome b5 as electron carriers in NADH-supported cytochrome P-450-dependent enzyme activities in liver microsomes. Archives of Biochemistry and Biophysics, 1974, 165, 331-339.	1.4	58
116	Evidence for the Participation of Cytochrome b5 in Plasmalogen Biosynthesis. Journal of Biological Chemistry, 1974, 249, 2661-2662.	1.6	102
117	STUDIES ON THE NADPH OXIDASE REACTION OF NADPH-CYTOCHROME C REDUCTASE. I. THE ROLE OF SUPEROXIDE ANION. Annals of the New York Academy of Sciences, 1973, 212, 89-93.	1.8	55
118	The N-oxidation of alkylhydrazines catalyzed by the microsomal mixed-function amine oxidase. Archives of Biochemistry and Biophysics, 1973, 158, 442-444.	1.4	45
119	Oxidative demethylation of N-methylhydrazines by rat liver microsomes. Archives of Biochemistry and Biophysics, 1969, 134, 308-315.	1.4	46
120	Evidence for the hepatic metabolism of some monoalkylhydrazines. Archives of Biochemistry and Biophysics, 1969, 131, 369-373.	1.4	38