Xiaofeng Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1869204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	General synthesis of Pt and Ni co-doped porous carbon nanofibers to boost HER performance in both acidic and alkaline solutions. Chinese Chemical Letters, 2023, 34, 107359.	4.8	17
2	Single-atom iron confined within polypyrrole-derived carbon nanotubes with exceptional peroxidase-like activity for total antioxidant capacity. Sensors and Actuators B: Chemical, 2022, 351, 130969.	4.0	31
3	Synthesis of hierarchical nickel sulfide nanotubes for highly efficient electrocatalytic urea oxidation. Applied Surface Science, 2022, 575, 151708.	3.1	40
4	Amorphous aerogel of trimetallic FeCoNi alloy for highly efficient oxygen evolution. Chemical Engineering Journal, 2022, 430, 132955.	6.6	40
5	Electrospun Nanofibers: Current Progress and Applications in Food Systems. Journal of Agricultural and Food Chemistry, 2022, 70, 1391-1409.	2.4	49
6	Promoting non-enzymatic electrochemical sensing performance toward glucose by the integration of conducting polypyrrole with metal-organic framework. Composites Communications, 2022, 30, 101074.	3.3	20
7	Controllable growth of Fe-doped NiS2 on NiFe-carbon nanofibers for boosting oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 614, 556-565.	5.0	32
8	BiOX (X = Cl, Br, I)/WO ₃ /Polyacrylonitrile Nanofibrous Membranes for Diagnostic X-Ray Shielding and Visible-Light Photocatalysis. ACS Applied Nano Materials, 2022, 5, 4157-4169.	2.4	9
9	Electronic modulation of iridium-molybdenum oxides with a low crystallinity for high-efficiency acidic oxygen evolution reaction. Chemical Engineering Journal, 2022, 440, 135851.	6.6	23
10	Conducting polymers-derived fascinating electrocatalysts for advanced hydrogen and oxygen electrocatalysis. Coordination Chemistry Reviews, 2022, 464, 214555.	9.5	32
11	Confinement of Prussian Blue Analogs Boxes Inside Conducting Polymer Nanotubes Enables Significantly Enhanced Catalytic Performance for Water Treatment. Advanced Functional Materials, 2022, 32, .	7.8	51
12	Electronic modulation and interface engineering of electrospun nanomaterialsâ€based electrocatalysts toward water splitting. , 2021, 3, 101-128.		134
13	Two-dimensional poly(3,4-ethylenedioxythiophene) nanosheets for highly electrochemical detection of iodide ions. Analytica Chimica Acta, 2021, 1144, 122-129.	2.6	6
14	Morphology-controlled fabrication of NiCo2S4 nanostructures decorating carbon nanofibers as low-cost counter electrode for efficient dye-sensitized solar cells. Electrochimica Acta, 2021, 367, 137451.	2.6	33
15	Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3786-3827.	5.2	140
16	Completeâ€Lifecycleâ€Available, Lightweight and Flexible Hierarchical Structured Bi ₂ WO ₆ /WO ₃ /PAN Nanofibrous Membrane for Xâ€Ray Shielding and Photocatalytic Degradation. Advanced Materials Interfaces, 2021, 8, 2002131.	1.9	17
17	Metal–Organic Frameworks and Their Derived Functional Materials for Supercapacitor Electrode Application. Advanced Energy and Sustainability Research, 2021, 2, 2100024.	2.8	37
18	Sacrificial template synthesis of ultrathin polyaniline nanosheets and their application in highly sensitive electrochemical dopamine detection. Materials Today Chemistry, 2021, 20, 100479.	1.7	3

#	Article	IF	CITATIONS
19	Synergistic coupling of NiFe layered double hydroxides with Co-C nanofibers for high-efficiency oxygen evolution reaction. Chemical Engineering Journal, 2021, 415, 128879.	6.6	38
20	Interface Engineering of Heterogeneous CeO ₂ –CoO Nanofibers with Rich Oxygen Vacancies for Enhanced Electrocatalytic Oxygen Evolution Performance. ACS Applied Materials & Interfaces, 2021, 13, 46998-47009.	4.0	40
21	Fabrication of two-dimensional carbon/V2O3 composite nanosheets and their application for electrochemical sensing. Composites Communications, 2021, 27, 100842.	3.3	2
22	Palladium cobalt alloy encapsulated in carbon nanofibers as bifunctional electrocatalyst for high-efficiency overall hydrazine splitting. Journal of Colloid and Interface Science, 2021, 601, 495-504.	5.0	12
23	Transition metal sulfides meet electrospinning: versatile synthesis, distinct properties and prospective applications. Nanoscale, 2021, 13, 9112-9146.	2.8	35
24	Fiber-in-Tube Design of a CuFe ₂ O ₄ @Conducting Polymer with Synergistically Enhanced Peroxidase-like Activity for Total Antioxidant Capacity Assays. ACS Sustainable Chemistry and Engineering, 2021, 9, 14811-14820.	3.2	18
25	RuNi Nanoparticles Embedded in Nâ€Doped Carbon Nanofibers as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting. Advanced Science, 2020, 7, 1901833.	5.6	152
26	Bimetallic MOF Nanosheets Decorated on Electrospun Nanofibers for High-Performance Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 1280-1291.	4.0	154
27	Fe doped CoO/C nanofibers towards efficient oxygen evolution reaction. Applied Surface Science, 2020, 506, 144680.	3.1	35
28	Cu2+-doped polypyrrole nanotubes with promoted efficiency for peroxidase mimicking and electrochemical biosensing. Materials Today Chemistry, 2020, 18, 100374.	1.7	13
29	Rational Design of Hierarchical CoO/NiO Nanosheets on Conductive Polypyrrole Nanotubes for Peroxidase Mimicking and Sensing Application. ACS Sustainable Chemistry and Engineering, 2020, 8, 11069-11078.	3.2	31
30	Fabrication of oxidase-like polyaniline-MnO2 hybrid nanowires and their sensitive colorimetric detection of sulfite and ascorbic acid. Talanta, 2019, 191, 171-179.	2.9	59
31	Mo/Mo2C encapsulated in nitrogen-doped carbon nanofibers as efficiently integrated heterojunction electrocatalysts for hydrogen evolution reaction in wide pH range. Applied Surface Science, 2019, 496, 143672.	3.1	49
32	Constructing magnetic Fe ₃ O ₄ â€Au@CeO ₂ hybrid nanofibers for selective catalytic degradation of organic dyes. Applied Organometallic Chemistry, 2019, 33, e5253.	1.7	13
33	Functional nanomaterials with unique enzyme-like characteristics for sensing applications. Journal of Materials Chemistry B, 2019, 7, 850-875.	2.9	155
34	Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorganic Chemistry Frontiers, 2019, 6, 3012-3040.	3.0	60
35	Ni Strongly Coupled with Mo ₂ C Encapsulated in Nitrogenâ€Doped Carbon Nanofibers as Robust Bifunctional Catalyst for Overall Water Splitting. Advanced Energy Materials, 2019, 9, 1803185.	10.2	306
36	Fe(III)-Tannic Acid Complex Derived Fe ₃ C Decorated Carbon Nanofibers for Triple-Enzyme Mimetic Activity and Their Biosensing Application. ACS Biomaterials Science and Engineering, 2019, 5, 1238-1246.	2.6	21

#	Article	IF	CITATIONS
37	Interfacial engineering regulating the peroxidase-like property of ternary composite nanofibers and their sensing applications. Applied Surface Science, 2019, 491, 138-146.	3.1	16
38	Metal–organic framework derived hierarchical Ni/Ni ₃ S ₂ decorated carbon nanofibers for high-performance supercapacitors. Materials Chemistry Frontiers, 2019, 3, 1653-1660.	3.2	39
39	An efficient thin-walled Pd/polypyrrole hybrid nanotube biocatalyst for sensitive detection of ascorbic acid. Analytica Chimica Acta, 2019, 1056, 125-134.	2.6	14
40	Molecular Orientation in Individual Electrospun Nanofibers Studied by Polarized AFM–IR. Macromolecules, 2019, 52, 9639-9645.	2.2	31
41	Electrospun nanofibrous materials: A versatile platform for enzyme mimicking and their sensing applications. Composites Communications, 2019, 12, 1-13.	3.3	40
42	Fabrication of two-dimensional metal-organic frameworks on electrospun nanofibers and their derived metal doped carbon nanofibers for an advanced asymmetric supercapacitor with a high energy density. Journal of Power Sources, 2019, 413, 50-58.	4.0	67
43	Bifunctional and Efficient CoS ₂ –C@MoS ₂ Core–Shell Nanofiber Electrocatalyst for Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 2899-2905.	3.2	91
44	Self-templated fabrication of FeMnO ₃ nanoparticle-filled polypyrrole nanotubes for peroxidase mimicking with a synergistic effect and their sensitive colorimetric detection of glutathione. Chemical Communications, 2018, 54, 5827-5830.	2.2	85
45	A Facile synthesis of superparamagnetic Fe3O4 nanofibers with superior peroxidase-like catalytic activity for sensitive colorimetric detection of l-cysteine. Applied Surface Science, 2018, 440, 237-244.	3.1	57
46	Facile preparation of Prussian blue/polypyrrole hybrid nanofibers as robust peroxidase mimics for colorimetric detection of l-cysteine. Materials Chemistry Frontiers, 2018, 2, 768-774.	3.2	22
47	Direct growth of Ni–Mn–O nanosheets on flexible electrospun carbon nanofibers for high performance supercapacitor applications. Inorganic Chemistry Frontiers, 2018, 5, 635-642.	3.0	57
48	Synthesis of hierarchical Co3O4@NiO core-shell nanotubes with a synergistic catalytic activity for peroxidase mimicking and colorimetric detection of dopamine. Talanta, 2018, 181, 431-439.	2.9	81
49	Conducting polymer-based peroxidase mimics: synthesis, synergistic enhanced properties and applications. Science China Materials, 2018, 61, 653-670.	3.5	46
50	Fabrication of highly dispersed ultrafine Co 9 S 8 nanoparticles on carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. Journal of Colloid and Interface Science, 2018, 522, 95-103.	5.0	27
51	Fabrication of cobalt ferrite/cobalt sulfide hybrid nanotubes with enhanced peroxidase-like activity for colorimetric detection of dopamine. Journal of Colloid and Interface Science, 2018, 511, 383-391.	5.0	66
52	General synthesis of hierarchical C/MOx@MnO2 (M = Mn, Cu, Co) composite nanofibers for high-performance supercapacitor electrodes. Journal of Colloid and Interface Science, 2018, 509, 235-244.	5.0	33
53	Fabrication of Pt nanoparticles on nitrogen-doped carbon/Ni nanofibers for improved hydrogen evolution activity. Journal of Colloid and Interface Science, 2018, 514, 199-207.	5.0	42
54	Dual Responsive Enzyme Mimicking of Ternary Polyaniline–MnO ₂ –Pd Nanowires and Its Application in Colorimetric Biosensing. ACS Sustainable Chemistry and Engineering, 2018, 6, 16482-16492.	3.2	32

#	Article	IF	CITATIONS
55	Fe ₃ C/Nitrogen-Doped Carbon Nanofibers as Highly Efficient Biocatalyst with Oxidase-Mimicking Activity for Colorimetric Sensing. ACS Sustainable Chemistry and Engineering, 2018, 6, 16766-16776.	3.2	45
56	Electrospinning based all-nano composite materials: Recent achievements and perspectives. Composites Communications, 2018, 10, 140-150.	3.3	64
57	Controlled synthesis of titanium dioxide/molybdenum disulfide core-shell hybrid nanofibers with enhanced peroxidase-like activity for colorimetric detection of glutathione. Journal of Colloid and Interface Science, 2018, 528, 410-418.	5.0	51
58	Encapsulation of Co ₃ O ₄ Nanoparticles Inside CeO ₂ Nanotubes: An Efficient Biocatalyst for the Ultrasensitive Detection of Ascorbic Acid. Particle and Particle Systems Characterization, 2018, 35, 1800049.	1.2	13
59	Growth of polyaniline thorns on hybrid electrospun CNFs with nickel nanoparticles and graphene nanosheets as binder-free electrodes for high-performance supercapacitors. Applied Surface Science, 2018, 458, 389-396.	3.1	41
60	Oxidase-mimicking activity of perovskite LaMnO _{3+δ} nanofibers and their application for colorimetric sensing. Journal of Materials Chemistry B, 2018, 6, 5931-5939.	2.9	52
61	Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding. NPG Asia Materials, 2018, 10, 749-760.	3.8	170
62	Enhanced Peroxidase-like Activity of Mo ⁶⁺ -Doped Co ₃ O ₄ Nanotubes for Ultrasensitive and Colorimetric <scp>l</scp> -Cysteine Detection. ACS Applied Nano Materials, 2018, 1, 4703-4715.	2.4	54
63	Fabrication of ternary MoS2-polypyrrole-Pd nanotubes as peroxidase mimics with a synergistic effect and their sensitive colorimetric detection of l-cysteine. Analytica Chimica Acta, 2018, 1035, 146-153.	2.6	47
64	Reactive Template Synthesis of Inorganic/Organic VO ₂ @Polyaniline Coaxial Nanobelts for Highâ€Performance Supercapacitors. ChemElectroChem, 2017, 4, 1095-1100.	1.7	30
65	Hierarchical α-Fe 2 O 3 @MnO 2 core-shell nanotubes as electrode materials for high-performance supercapacitors. Electrochimica Acta, 2017, 231, 36-43.	2.6	84
66	One-dimensional polyaniline thorn/BiOCl chip heterostructures: self-sacrificial template-induced synthesis and electrochemical performance. Materials Chemistry Frontiers, 2017, 1, 859-866.	3.2	15
67	A facile synthesis of Fe ₃ O ₄ /nitrogen-doped carbon hybrid nanofibers as a robust peroxidase-like catalyst for the sensitive colorimetric detection of ascorbic acid. Journal of Materials Chemistry B, 2017, 5, 5499-5505.	2.9	65
68	Strongly coupled CeO ₂ /Co ₃ O ₄ /poly(3,4-ethylenedioxythiophene) nanofibers with enhanced nanozyme activity for highly sensitive colorimetric detection. Nanotechnology, 2017, 28, 295704.	1.3	27
69	FeCo nanoparticles-embedded carbon nanofibers as robust peroxidase mimics for sensitive colorimetric detection of <scp>l</scp> -cysteine. Dalton Transactions, 2017, 46, 8942-8949.	1.6	47
70	Self-assembly directed synthesis of Au nanorices induced by polyaniline and their enhanced peroxidase-like catalytic properties. Journal of Materials Chemistry C, 2017, 5, 7465-7471.	2.7	72
71	Hierarchical CNFs/MnCo ₂ O _{4.5} nanofibers as a highly active oxidase mimetic and its application in biosensing. Nanotechnology, 2017, 28, 485708.	1.3	30
72	Electrospun magnetic CoFe ₂ O ₄ /Ag hybrid nanotubes for sensitive SERS detection and monitoring of the catalytic degradation of organic pollutants. RSC Advances, 2017, 7, 40334-40341.	1.7	17

#	Article	IF	CITATIONS
73	Fabrication of oxidase-like hollow MnCo ₂ O ₄ nanofibers and their sensitive colorimetric detection of sulfite and <scp>I</scp> -cysteine. Inorganic Chemistry Frontiers, 2017, 4, 1862-1869.	3.0	74
74	A facile synthesis of CuFe ₂ O ₄ /Cu ₉ S ₈ /PPy ternary nanotubes as peroxidase mimics for the sensitive colorimetric detection of H ₂ O ₂ and dopamine. Dalton Transactions, 2017, 46, 11171-11179.	1.6	48
75	Carbon dots/Fe ₃ O ₄ hybrid nanofibers as efficient peroxidase mimics for sensitive detection of H ₂ O ₂ and ascorbic acid. Inorganic Chemistry Frontiers, 2017, 4, 1621-1627.	3.0	51
76	Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance. Advanced Energy Materials, 2017, 7, 1601301.	10.2	334
77	Synthesis of RGO/Cu ₈ S ₅ /PPy Composite Nanosheets with Enhanced Peroxidase-Like Activity for Sensitive Colorimetric Detection of H ₂ O ₂ and Phenol. Particle and Particle Systems Characterization, 2017, 34, 1600233.	1.2	33
78	Synthesis of bifunctional reduced graphene oxide/CuS/Au composite nanosheets for in situ monitoring of a peroxidase-like catalytic reaction by surface-enhanced Raman spectroscopy. RSC Advances, 2016, 6, 54456-54462.	1.7	45
79	CoO _x nanoparticles embedded in porous graphite carbon nanofibers derived from electrospun polyacrylonitrile@polypyrrole core–shell nanostructures for high-performance supercapacitors. RSC Advances, 2016, 6, 54693-54701.	1.7	29
80	Synergistic effect of ternary electrospun TiO ₂ /Fe ₂ O ₃ /PPy composite nanofibers on peroxidase-like mimics with enhanced catalytic performance. RSC Advances, 2016, 6, 31107-31113.	1.7	34
81	Palladium nanoparticles modified electrospun CoFe ₂ O ₄ nanotubes with enhanced peroxidase-like activity for colorimetric detection of hydrogen peroxide. RSC Advances, 2016, 6, 33636-33642.	1.7	57
82	Self-Assembly Fabrication of Coaxial Te@poly(3,4-ethylenedioxythiophene) Nanocables and Their Conversion to Pd@poly(3,4-ethylenedioxythiophene) Nanocables with a High Peroxidase-like Activity. ACS Applied Materials & Interfaces, 2016, 8, 1041-1049.	4.0	32
83	Fabrication of Au nanoparticles supported on CoFe2O4 nanotubes by polyaniline assisted self-assembly strategy and their magnetically recoverable catalytic properties. Applied Surface Science, 2016, 363, 578-585.	3.1	49
84	Oneâ€Pot Synthesis of Algaeâ€Like MoS ₂ /PPy Nanocomposite: A Synergistic Catalyst with Superior Peroxidaseâ€Like Catalytic Activity for H ₂ O ₂ Detection. Particle and Particle Systems Characterization, 2015, 32, 886-892.	1.2	63
85	Electrospun polyacrylonitrile nanofibers supported alloyed Pd–Pt nanoparticles as recyclable catalysts for hydrogen generation from the hydrolysis of ammonia borane. RSC Advances, 2015, 5, 94456-94461.	1.7	29
86	Rapid, Microwaveâ€Assisted, and Oneâ€Pot Synthesis of Magnetic Palladium–CoFe ₂ O ₄ –Graphene Composite Nanosheets and Their Applications as Recyclable Catalysts. Particle and Particle Systems Characterization, 2014, 31, 245-251.	1.2	46
87	One-Step Preparation of CoFe ₂ O ₄ /Polypyrrole/Pd Ternary Nanofibers and Their Catalytic Activity Toward <i>p</i> -Nitrophenol Hydrogenation Reaction. Macromolecular Materials and Engineering, 2014, 299, 361-367.	1.7	26
88	Monocrystalline VO2 (B) nanobelts: large-scale synthesis, intrinsic peroxidase-like activity and application in biosensing. Journal of Materials Chemistry A, 2014, 2, 2910.	5.2	83
89	A one-pot synthesis of a highly dispersed palladium/polypyrrole/polyacrylonitrile nanofiber membrane and its recyclable catalysis in hydrogen generation from ammonia borane. Journal of Materials Chemistry A, 2014, 2, 6740-6746.	5.2	35
90	Electrospun V ₂ O ₅ -doped α-Fe ₂ O ₃ composite nanotubes with tunable ferromagnetism for high-performance supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 15495.	5.2	67

#	Article	IF	CITATIONS
91	Electrospun polyacrylonitrile nanofibers supported Ag/Pd nanoparticles for hydrogen generation from the hydrolysis of ammonia borane. Journal of Power Sources, 2014, 261, 221-226.	4.0	76
92	Fabrication of poly(o-phenylenediamine)/reduced graphene oxide composite nanosheets via microwave heating and their effective adsorption of lead ions. Applied Surface Science, 2014, 307, 601-607.	3.1	43
93	Fabrication of polyacrylonitrile/CuS composite nanofibers and their recycled application in catalysis for dye degradation. Applied Surface Science, 2013, 284, 595-600.	3.1	59
94	A one-pot and in situ synthesis of CuS-graphene nanosheet composites with enhanced peroxidase-like catalytic activity. Dalton Transactions, 2013, 42, 14006.	1.6	119
95	Encapsulating conducting polypyrrole into electrospun TiO2 nanofibers: a new kind of nanoreactor for in situ loading Pd nanocatalysts towards p-nitrophenol hydrogenation. Journal of Materials Chemistry, 2012, 22, 12723.	6.7	95
96	Ultrahigh Active Pd Nanocatalyst Supported on Core-Sheath Conducting Polymer/Metal Oxide Composite Nanorods. Catalysis Letters, 2012, 142, 566-572.	1.4	11
97	Preparation of bamboo-like PPy nanotubes and their application for removal of Cr(VI) ions in aqueous solution. Journal of Colloid and Interface Science, 2012, 378, 30-35.	5.0	75
98	Facile synthesis of highly dispersed palladium/polypyrrole nanocapsules for catalytic reduction of p-nitrophenol. Journal of Colloid and Interface Science, 2012, 379, 89-93.	5.0	84
99	Fabrication of multiwalled carbon nanotubes/polypyrrole/Prussian blue ternary composite nanofibers and their application for enzymeless hydrogen peroxide detection. Journal of Materials Science, 2012, 47, 4326-4331.	1.7	25
100	One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Progress in Polymer Science, 2011, 36, 671-712.	11.8	568
101	Crosslinked sulfonated poly(arylene ether ketone) with pendant carboxylic acid group via poly(ethylene glycol) for proton exchange membrane. Journal of Applied Polymer Science, 2010, 118, 3318-3323.	1.3	14
102	Oneâ€Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small, 2009, 5, 2349-2370.	5.2	801
103	Fabrication of coreâ€shell Fe ₃ O ₄ /polypyrrole and hollow polypyrrole microspheres. Polymer Composites, 2009, 30, 847-854.	2.3	71
104	Investigation on PEDOT/β-Fe3+O(OH,Cl) nanospindles as a new steady electrode material for detecting iodic compounds. Electrochemistry Communications, 2009, 11, 603-607.	2.3	7
105	Electrospinning of carbon/CdS coaxial nanofibers with photoluminescence and conductive properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 140, 48-52.	1.7	41
106	Synthesis and characterization of CdS nanoparticles in polystyrene microfibers. Materials Letters, 2007, 61, 2288-2291.	1.3	23
107	Fabrication of Polyaniline Nanostructures under Ultrasonic Irradiation: From Nanotubes to Nanofibers. Macromolecular Chemistry and Physics, 2006, 207, 2142-2152.	1.1	72
108	Fabrication of CdS Nanorods in PVP Fiber Matrices by Electrospinning. Macromolecular Rapid Communications, 2005, 26, 1325-1329.	2.0	84

#	Article	IF	CITATIONS
109	Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning. Nanotechnology, 2005, 16, 2233-2237.	1.3	98