
Jianying Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1868234/publications.pdf Version: 2024-02-01

LIANVING HUANG

#	Article	IF	CITATIONS
1	A review of one-dimensional TiO ₂ nanostructured materials for environmental and energy applications. Journal of Materials Chemistry A, 2016, 4, 6772-6801.	5.2	793
2	A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 2017, 5, 31-55.	5.2	515
3	Designing Superhydrophobic Porous Nanostructures with Tunable Water Adhesion. Advanced Materials, 2009, 21, 3799-3803.	11.1	439
4	Graphene aerogels for efficient energy storage and conversion. Energy and Environmental Science, 2018, 11, 772-799.	15.6	435
5	Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. Journal of Materials Chemistry A, 2016, 4, 12179-12187.	5.2	432
6	Oneâ€dimensional TiO ₂ Nanotube Photocatalysts for Solar Water Splitting. Advanced Science, 2017, 4, 1600152.	5.6	405
7	A review of TiO 2 nanostructured catalysts for sustainable H 2 generation. International Journal of Hydrogen Energy, 2017, 42, 8418-8449.	3.8	309
8	Recent Advances in TiO ₂ â€Based Nanostructured Surfaces with Controllable Wettability and Adhesion. Small, 2016, 12, 2203-2224.	5.2	278
9	A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. Chemical Engineering Journal, 2020, 399, 125746.	6.6	264
10	Rational design of materials interface at nanoscale towards intelligent oil–water separation. Nanoscale Horizons, 2018, 3, 235-260.	4.1	262
11	Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications. Small, 2017, 13, 1602992.	5.2	259
12	Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Advances, 2015, 5, 79479-79510.	1.7	247
13	Crafting Musselâ€Inspired Metal Nanoparticleâ€Decorated Ultrathin Graphitic Carbon Nitride for the Degradation of Chemical Pollutants and Production of Chemical Resources. Advanced Materials, 2019, 31, e1806314.	11.1	239
14	Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation. Chemical Engineering Journal, 2017, 330, 26-35.	6.6	228
15	Bioinspired Surfaces with Superwettability for Antiâ€lcing and Iceâ€Phobic Application: Concept, Mechanism, and Design. Small, 2017, 13, 1701867.	5.2	223
16	Recent Progress of Polysaccharideâ€Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Advanced Materials Interfaces, 2019, 6, 1900761.	1.9	222
17	Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation. Chemical Engineering Journal, 2018, 333, 621-629.	6.6	207
18	Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. Journal of Materials Chemistry A, 2017, 5, 11873-11881.	5.2	206

#	Article	IF	CITATIONS
19	Bioinspired Surfaces with Superamphiphobic Properties: Concepts, Synthesis, and Applications. Advanced Functional Materials, 2018, 28, 1707415.	7.8	206
20	A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability. Journal of Materials Chemistry A, 2019, 7, 2122-2128.	5.2	205
21	Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation. ACS Applied Materials & Interfaces, 2021, 13, 67-87.	4.0	190
22	A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching. Chemical Engineering Journal, 2019, 355, 290-298.	6.6	183
23	Markedly Controllable Adhesion of Superhydrophobic Spongelike Nanostructure TiO ₂ Films. Langmuir, 2008, 24, 3867-3873.	1.6	182
24	Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2020, 8, 2934-2961.	5.2	170
25	Recent Advances in Siliconâ€Based Electrodes: From Fundamental Research toward Practical Applications. Advanced Materials, 2021, 33, e2004577.	11.1	168
26	Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation. Materials and Design, 2017, 134, 342-351.	3.3	164
27	Liquid mobility on superwettable surfaces for applications in energy and the environment. Journal of Materials Chemistry A, 2019, 7, 38-63.	5.2	161
28	Bioinspired Patterning with Extreme Wettability Contrast on TiO ₂ Nanotube Array Surface: A Versatile Platform for Biomedical Applications. Small, 2013, 9, 2945-2953.	5.2	159
29	3D Au-decorated BiMoO ₆ nanosheet/TiO ₂ nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 16412-16421.	5.2	150
30	Superhydrophilic–superhydrophobic micropattern on TiO2 nanotube films by photocatalytic lithography. Electrochemistry Communications, 2008, 10, 387-391.	2.3	147
31	Progress on particulate matter filtration technology: basic concepts, advanced materials, and performances. Nanoscale, 2020, 12, 437-453.	2.8	145
32	A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chemical Engineering Journal, 2020, 385, 123912.	6.6	128
33	Immobilization of Pt Nanoparticles via Rapid and Reusable Electropolymerization of Dopamine on TiO ₂ Nanotube Arrays for Reversible SERS Substrates and Nonenzymatic Glucose Sensors. Small, 2017, 13, 1604240.	5.2	125
34	Progress in TiO ₂ nanotube coatings for biomedical applications: a review. Journal of Materials Chemistry B, 2018, 6, 1862-1886.	2.9	121
35	Mechanically Resistant and Sustainable Cellulose-Based Composite Aerogels with Excellent Flame Retardant, Sound-Absorption, and Superantiwetting Ability for Advanced Engineering Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 927-936.	3.2	120
36	Lightâ€Ðriven Sustainable Hydrogen Production Utilizing TiO ₂ Nanostructures: A Review. Small Methods, 2019, 3, 1800184.	4.6	118

#	Article	IF	CITATIONS
37	Enhanced photocatalytic performances of n-TiO ₂ nanotubes by uniform creation of p–n heterojunctions with p-Bi ₂ O ₃ quantum dots. Nanoscale, 2015, 7, 11552-11560.	2.8	117
38	Synthesis, characterization, and antimicrobial activities of sulfonated chitosan. Carbohydrate Polymers, 2017, 155, 321-328.	5.1	109
39	Photothermal and Joule heating-assisted thermal management sponge for efficient cleanup of highly viscous crude oil. Journal of Hazardous Materials, 2021, 403, 124090.	6.5	109
40	Facile construction of robust fluorine-free superhydrophobic TiO 2 @fabrics with excellent anti-fouling, water-oil separation and UV-protective properties. Materials and Design, 2017, 128, 1-8.	3.3	107
41	Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing. Chemical Engineering Journal, 2022, 427, 130922.	6.6	105
42	Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chemistry, 2014, 155, 105-111.	4.2	101
43	Understanding the Role of Dynamic Wettability for Condensate Microdrop Selfâ€Propelling Based on Designed Superhydrophobic TiO ₂ Nanostructures. Small, 2017, 13, 1600687.	5.2	101
44	Uniform carbon dots@TiO ₂ nanotube arrays with full spectrum wavelength light activation for efficient dye degradation and overall water splitting. Nanoscale, 2017, 9, 16046-16058.	2.8	100
45	Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting. Nano Energy, 2020, 78, 105313.	8.2	100
46	Chitosanâ€based Edible Coatings for Quality Preservation of Postharvest Whiteleg Shrimp (<i>Litopenaeus vannamei</i>). Journal of Food Science, 2012, 77, C491-6.	1.5	94
47	Vertically-aligned Pt-decorated MoS2 nanosheets coated on TiO2 nanotube arrays enable high-efficiency solar-light energy utilization for photocatalysis and self-cleaning SERS devices. Nano Energy, 2020, 71, 104579.	8.2	92
48	Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting. Journal of Materials Science and Technology, 2021, 61, 85-92.	5.6	92
49	Durable antibacterial and UV-protective Ag/TiO ₂ @fabrics for sustainable biomedical application. International Journal of Nanomedicine, 2017, Volume 12, 2593-2606.	3.3	90
50	Controllable wettability and adhesion on bioinspired multifunctional TiO ₂ nanostructure surfaces for liquid manipulation. Journal of Materials Chemistry A, 2014, 2, 18531-18538.	5.2	84
51	Preparation of highly crystalline nitrogen-doped carbon dots and their application in sequential fluorescent detection of Fe3+ and ascorbic acid. Food Chemistry, 2020, 326, 126935.	4.2	84
52	In-situ formation of unsaturated defect sites on converted CoNi alloy/Co-Ni LDH to activate MoS2 nanosheets for pH-universal hydrogen evolution reaction. Chemical Engineering Journal, 2021, 412, 128556.	6.6	80
53	MoS ₂ Quantum Dots@TiO ₂ Nanotube Arrays: An Extended-Spectrum-Driven Photocatalyst for Solar Hydrogen Evolution. ChemSusChem, 2018, 11, 1708-1721.	3.6	77
54	Defective black Ti3+ self-doped TiO2 and reduced graphene oxide composite nanoparticles for boosting visible-light driven photocatalytic and photoelectrochemical activity. Applied Surface Science, 2019, 467-468, 45-55.	3.1	77

#	Article	IF	CITATIONS
55	Hydrogel materials for sustainable water resources harvesting & treatment: Synthesis, mechanism and applications. Chemical Engineering Journal, 2022, 439, 135756.	6.6	75
56	Multifunctional wettability patterns prepared by laser processing on superhydrophobic TiO ₂ nanostructured surfaces. Journal of Materials Chemistry B, 2015, 3, 342-347.	2.9	72
57	Molybdenum sulfide cocatalyst activation upon photodeposition of cobalt for improved photocatalytic hydrogen production activity of ZnCdS. Chemical Engineering Journal, 2021, 425, 131478.	6.6	72
58	Inhibition of bacterial adhesion and biofilm formation of sulfonated chitosan against Pseudomonas aeruginosa. Carbohydrate Polymers, 2019, 206, 412-419.	5.1	66
59	A superhydrophobic TPU/CNTs@SiO2 coating with excellent mechanical durability and chemical stability for sustainable anti-fouling and anti-corrosion. Chemical Engineering Journal, 2022, 434, 134605.	6.6	66
60	Highly Flexible and Porous Nanoparticle-Loaded Films for Dye Removal by Graphene Oxide–Fungus Interaction. ACS Applied Materials & Interfaces, 2016, 8, 34638-34647.	4.0	63
61	Underwater, Multifunctional Superhydrophobic Sensor for Human Motion Detection. ACS Applied Materials & Interfaces, 2021, 13, 4740-4749.	4.0	63
62	Pyridine-grafted chitosan derivative as an antifungal agent. Food Chemistry, 2016, 196, 381-387.	4.2	60
63	Particulate Matter Capturing via Naturally Dried ZIF-8/Graphene Aerogels under Harsh Conditions. IScience, 2019, 16, 133-144.	1.9	60
64	Insight into the interaction between chitosan and bovine serum albumin. Carbohydrate Polymers, 2017, 176, 75-82.	5.1	57
65	Charged graphene aerogel filter enabled superior particulate matter removal efficiency in harsh environment. Chemical Engineering Journal, 2020, 395, 125086.	6.6	53
66	Selective formation of ordered arrays of octacalcium phosphate ribbons on TiO2 nanotube surface by template-assisted electrodeposition. Colloids and Surfaces B: Biointerfaces, 2010, 76, 117-122.	2.5	51
67	Preparation of chitosan/poly vinyl alcohol films and their inhibition of biofilm formation against Pseudomonas aeruginosa PAO1. International Journal of Biological Macromolecules, 2018, 118, 2131-2137.	3.6	51
68	Robust Superhydrophobic rGO/PPy/PDMS Coatings on a Polyurethane Sponge for Underwater Pressure and Temperature Sensing. ACS Applied Materials & Interfaces, 2021, 13, 53271-53281.	4.0	51
69	Flame retardance and thermal stability of wool fabric treated by boron containing silica sols. Materials and Design, 2015, 85, 796-799.	3.3	48
70	A multifunctional and environmentally-friendly method to fabricate superhydrophilic and self-healing coatings for sustainable antifogging. Chemical Engineering Journal, 2021, 409, 128228.	6.6	48
71	Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning. Cellulose, 2017, 24, 1129-1141.	2.4	46
72	Controllable construction of ZnO/TiO2patterningnanostructures by superhydrophilic/superhydrophobic templates. New Journal of Chemistry, 2010, 34, 44-51.	1.4	44

#	Article	IF	CITATIONS
73	Co-solvent induced self-roughness superhydrophobic coatings with self-healing property for versatile oil-water separation. Applied Surface Science, 2018, 459, 512-519.	3.1	44
74	An effective and low-consumption foam finishing strategy for robust functional fabrics with on-demand special wettability. Chemical Engineering Journal, 2021, 426, 131245.	6.6	44
75	Antibacterial activity evaluation of quaternary chitin against Escherichia coli and Staphylococcus aureus. International Journal of Biological Macromolecules, 2013, 52, 85-91.	3.6	42
76	Bioinspired structural and functional designs towards interfacial solar steam generation for clean water production. Materials Chemistry Frontiers, 2021, 5, 1510-1524.	3.2	42
77	Preparation, Antibacterial, and Antioxidant Activities of Silver/Chitosan Composites. Journal of Carbohydrate Chemistry, 2014, 33, 298-312.	0.4	41
78	Polydopamine-Inspired Design and Synthesis of Visible-Light-Driven Ag NPs@C@elongated TiO ₂ NTs Core–Shell Nanocomposites for Sustainable Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 558-568.	3.2	41
79	Mechanically Reinforced Localized Structure Design to Stabilize Solid–Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO ₂ Nanotubes. Small, 2020, 16, e2002094.	5.2	41
80	Synthesis of sulfonated chitosan and its antibiofilm formation activity against E. coli and S. aureus. International Journal of Biological Macromolecules, 2019, 129, 980-988.	3.6	40
81	Controlled synthesis of high-ortho-substitution phenol-formaldehyde resins. Journal of Applied Polymer Science, 2005, 97, 652-658.	1.3	39
82	Advances in particulate matter filtration: Materials, performance, and application. Green Energy and Environment, 2023, 8, 673-697.	4.7	37
83	Noble-metal-free metallic MoC combined with CdS for enhanced visible-light-driven photocatalytic hydrogen evolution. Journal of Cleaner Production, 2021, 322, 129018.	4.6	36
84	<i>In vivo</i> and <i>in vitro</i> efficient textile wastewater remediation by <i>Aspergillus niger</i> biosorbent. Nanoscale Advances, 2019, 1, 168-176.	2.2	35
85	One-pot loading of cadmium sulfide onto tungsten carbide for efficient photocatalytic H2 evolution under visible light irradiation. Chemical Engineering Journal, 2022, 434, 134689.	6.6	35
86	Reducing Oxygen Evolution Reaction Overpotential in Cobaltâ€Based Electrocatalysts via Optimizing the "Microparticlesâ€inâ€5pider Web―Electrode Configurations. Small, 2020, 16, e1907029.	5.2	34
87	Rational designed structured superhydrophobic iron oxide surface towards sustainable anti-corrosion and self-cleaning. Chemical Engineering Journal, 2021, 416, 127768.	6.6	34
88	Superhydrophilic–Superhydrophobic Template: A Simple Approach to Micro- and Nanostructure Patterning of TiO[sub 2] Films. Journal of the Electrochemical Society, 2009, 156, D480.	1.3	33
89	Effect of Chitosan as an Antifungal and Preservative Agent on Postharvest Blueberry. Journal of Food Quality, 2016, 39, 516-523.	1.4	33
90	Boosting heterojunction interaction in electrochemical construction of MoS2 quantum dots@TiO2 nanotube arrays for highly effective photoelectrochemical performance and electrocatalytic hydrogen evolution. Electrochemistry Communications, 2018, 93, 152-157.	2.3	33

#	Article	IF	CITATIONS
91	Smart surfaces with reversibly switchable wettability: Concepts, synthesis and applications. Advances in Colloid and Interface Science, 2022, 300, 102584.	7.0	33
92	TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation. Journal of Materials Science and Technology, 2020, 39, 28-38.	5.6	32
93	Fog catcher brushes with environmental friendly slippery alumina micro-needle structured surface for efficient fog-harvesting. Journal of Cleaner Production, 2021, 315, 127862.	4.6	32
94	Evaluation Antibacterial Activity of Quaternaryâ€Based Chitin/Chitosan Derivatives <i>In Vitro</i> . Journal of Food Science, 2013, 78, M90-7.	1.5	31
95	Synthesis, antioxidant and cathepsin D inhibition activity of quaternary ammonium chitosan derivatives. Carbohydrate Polymers, 2016, 136, 884-891.	5.1	29
96	Solar-assisted isotropically thermoconductive sponge for highly viscous crude oil spill remediation. IScience, 2021, 24, 102665.	1.9	29
97	Fabrication of patterned CdS/TiO2 heterojunction by wettability template-assisted electrodeposition. Materials Letters, 2010, 64, 1309-1312.	1.3	28
98	Multi-functional hybrid protonated titanate nanobelts with tunable wettability. Soft Matter, 2011, 7, 6313.	1.2	28
99	Controllable Superhydrophobic Coating on Cotton Fabric by UV Induced Thiolâ€ene Reaction for Wettability Patterning and Device Metallization. Advanced Materials Interfaces, 2017, 4, 1700268.	1.9	27
100	Silver/chitosan-based Janus particles: Synthesis, characterization, and assessment of antimicrobial activity in vivo and vitro. Food Research International, 2015, 78, 433-441.	2.9	25
101	Freestanding MoS2@carbonized cellulose aerogel derived from waste cotton for sustainable and highly efficient particulate matter capturing. Separation and Purification Technology, 2021, 254, 117571.	3.9	23
102	A sandwich-like structured superhydrophobic fabric for versatile and highly efficient emulsion separation. Separation and Purification Technology, 2021, 275, 119253.	3.9	22
103	Multifunctional TiO ₂ â€Based Particles: The Effect of Fluorination Degree and Liquid Surface Tension on Wetting Behavior. Particle and Particle Systems Characterization, 2015, 32, 355-363.	1.2	20
104	Rational Construction of LaFeO3 Perovskite Nanoparticle-Modified TiO2 Nanotube Arrays for Visible-Light Driven Photocatalytic Activity. Coatings, 2018, 8, 374.	1.2	18
105	Polyaniline/Poly(acrylamideâ€coâ€sodium acrylate) Porous Conductive Hydrogels with High Stretchability by Freezeâ€Thawâ€Shrink Treatment for Flexible Electrodes. Macromolecular Materials and Engineering, 2020, 305, 1900737.	1.7	17
106	Robust amphiprotic konjac glucomannan cross-linked chitosan aerogels for efficient water remediation. Cellulose, 2019, 26, 6785-6796.	2.4	16
107	Effect of chitosan preâ€soaking on the growth and quality of yellow soybean sprouts. Journal of the Science of Food and Agriculture, 2019, 99, 1596-1603.	1.7	16
108	Kinetics of water absorption expansion of rice during soaking at different temperatures and correlation analysis upon the influential factors. Food Chemistry, 2021, 346, 128912.	4.2	16

#	Article	IF	CITATIONS
109	Bioinspired fabrication SERS substrate based on superwettable patterned platform for multiphase high-sensitive detecting. Composites Communications, 2018, 10, 151-156.	3.3	15
110	Biosynthesis of chitosan-coated iron oxide (Fe3O4) hybrid nanocomposites from leaf extracts of Brassica oleracea L. and study on their antibacterial potentials. 3 Biotech, 2021, 11, 271.	1.1	15
111	Surface plasmon resonance metal-coupled biomass carbon modified TiO2 nanorods for photoelectrochemical water splitting. Chinese Journal of Chemical Engineering, 2022, 41, 403-411.	1.7	14
112	Selective antifungal activity of chitosan and sulfonated chitosan against postharvest fungus isolated from blueberry. Journal of Food Biochemistry, 2018, 42, e12658.	1.2	13
113	Batch affinity adsorption of His-tagged proteins with EDTA-based chitosan. Applied Microbiology and Biotechnology, 2016, 100, 879-891.	1.7	12
114	Antibacterial and Antibiofilm Formation Activities of Pyridinium-Based Cationic Pillar[5]arene Against <i>Pseudomonas aeruginosa</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 4276-4283.	2.4	12
115	Preparation and characterization of chitosan/poly(vinyl alcohol)/graphene oxide films and studies on their antibiofilm formation activity. Journal of Biomedical Materials Research - Part A, 2020, 108, 2015-2022.	2.1	11
116	Superwetting patterned PDMS/PMMA materials by facile one-step electro-spraying for signal expression and liquid transportation. Chemical Engineering Journal, 2022, 431, 133206.	6.6	11
117	One-Step Cyclization: Synthesis of N-Heteroalkyl-N′-tosylpiperazines. Journal of Organic Chemistry, 2012, 77, 7506-7511.	1.7	9
118	Fabrication of superhydrophobic surfaces inspired by "stomata effect―of plant leaves via swelling-vesiculating-cracking method. Chemical Engineering Journal, 2020, 400, 125935.	6.6	9
119	Self-assembly of chiral BINOL cages <i>via</i> imine condensation. Chemical Communications, 2021, 57, 9088-9091.	2.2	9
120	An environmentally friendly fluorine-free sandwich coating based on a nonwoven fabric for efficient unidirectional water transport. Chemical Communications, 2021, 57, 12623-12626.	2.2	8
121	Tea polyphenols mediated biogenic synthesis of chitosan-coated cerium oxide (CS/CeO2) nanocomposites and their potent antimicrobial capabilities. Environmental Science and Pollution Research, 2022, , 1.	2.7	8
122	Studies on Lyotropic Liquid-Crystalline N-Alkyl Chitosans in Formic Acid. Macromolecular Bioscience, 2002, 2, 131.	2.1	7
123	Effects of post-harvest stigmasterol treatment on quality-related parameters and antioxidant enzymes of green asparagus (Asparagus officinalis L.). Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1785-1792.	1.1	6
124	Rapid and Controllable Design of Robust Superwettable Microchips by a Click Reaction for Efficient <i>o</i> -Phthalaldehyde and Glucose Detection. ACS Biomaterials Science and Engineering, 2019, 5, 6186-6195.	2.6	5
125	Coupled porosity and heterojunction engineering: MOF-derived porous Co3O4 embedded on TiO2 nanotube arrays for water remediation. Chemosphere, 2021, 274, 129799.	4.2	5
126	Fluorescent Detection of Organophosphorus Pesticides Using Carbon Dots Derived from Broccoli. Arabian Journal for Science and Engineering, 2023, 48, 8315-8324.	1.7	5

#	Article	IF	CITATIONS
127	Rational construction of superhydrophobic PDMS/PTW@cotton fabric for efficient UV/NIR light shielding. Cellulose, 2022, 29, 4673-4685.	2.4	5
128	Chitosan/cellulose-based beads for the affinity purification of histidine-tagged proteins. Preparative Biochemistry and Biotechnology, 2018, 48, 352-360.	1.0	4
129	A visualization and quantification method to evaluate the water-absorbing characteristics of rice. Food Chemistry, 2020, 331, 127050.	4.2	4
130	Effect of Chitosan/BSA Addition on the Physical Stability of Sunflower Oil Emulsions. Journal of Food Quality, 2019, 2019, 1-8.	1.4	2
131	Isolation and identification of nucleosides/nucleotides raising testosterone and NO levels of mice serum from Chinese chive (Allium tuberosum) leaves. Andrologia, 2019, 51, e13191.	1.0	1
132	<i>In situ</i> recycling of particulate matter for a high-performance supercapacitor and oxygen evolution reaction. Materials Chemistry Frontiers, 2021, 5, 2742-2748.	3.2	1
133	Solar-Assisted Isotropically Thermoconductive Sponge for Highly Viscous Crude Oil Spill Remediation. SSRN Electronic Journal, 0, , .	0.4	0