Christian RÃ¹/₄ssel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1868204/publications.pdf

Version: 2024-02-01

109264 189801 3,568 137 35 50 citations g-index h-index papers 137 137 137 1763 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microstructure transformation of a crystallized glass from the system BaOâ€SrOâ€ZnOâ€SiO⟨sub⟩2⟨ sub⟩. Journal of the American Ceramic Society, 2022, 105, 3544-3554.	1.9	5
2	Noble metals Pt, Au, and Ag as nucleating agents in BaO/SrO/ZnO/SiO2 glasses: formation of alloys and core–shell structures. Journal of Materials Science, 2022, 57, 6607-6618.	1.7	5
3	Silver doped glasses from the system BaO/SrO/ZnO/SiO2 – The influence of Sb, Sn, and Ta on the formation of core-shell structures. Ceramics International, 2021, 47, 1126-1132.	2.3	2
4	Oriented surface nucleation in inorganic glasses – A review. Progress in Materials Science, 2021, 118, 100758.	16.0	17
5	Electrochemically induced nucleation of oxidic crystals in melts – a review. CrystEngComm, 2021, 23, 4419-4433.	1.3	2
6	How Can Surface-Crystallized Glass-Ceramics Be Piezoelectric?. Crystal Growth and Design, 2021, 21, 2405-2415.	1.4	6
7	The Structure of Gd3+-Doped Li2O and K2O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations. Materials, 2021, 14, 3265.	1.3	7
8	Electron channelling contrast imaging (ECCI) applied to a fresnoite dendrite grown via electrochemically induced nucleation. Journal of Non-Crystalline Solids, 2021, 570, 121019.	1.5	0
9	Tunable phase stability of negative thermal expansion materials by theory and experiment. Physical Chemistry Chemical Physics, 2021, 23, 25533-25541.	1.3	1
10	Spectroscopic investigations and magnetic measurements on iron-containing barium titanate glass-ceramics. Journal of Non-Crystalline Solids, 2020, 546, 120273.	1.5	1
11	Thermomechanical properties of zero thermal expansion materials from theory and experiments. Physical Chemistry Chemical Physics, 2020, 22, 18518-18525.	1.3	3
12	Crystal growth velocities of a highly anisotropic phase obtained via surface and volume crystallization of barium–strontium–zinc silicate glasses. Journal of Materials Science, 2020, 55, 10364-10374.	1.7	2
13	Crystallization of BaF ₂ from droplets of phase separated glass – evidence of a core–shell structure by ASAXS. CrystEngComm, 2020, 22, 5031-5039.	1.3	7
14	Tunable pore size in diopside glass-ceramics with silver nanoparticles. CrystEngComm, 2020, 22, 2238-2246.	1.3	4
15	Determination of the crystallization mechanism of glasses in the system BaO/SrO/ZnO/SiO2 with differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1193-1206.	2.0	9
16	Coreâ€"shell structures with metallic silver as nucleation agent of low expansion phases in BaO/SrO/ZnO/SiO ₂ glasses. CrystEngComm, 2019, 21, 4373-4386.	1.3	9
17	The detailed microstructure of an alumina-zirconia-silica (AZS) fused cast refractory material from the cast skin into the bulk analyzed using EBSD. Journal of the European Ceramic Society, 2019, 39, 2186-2198.	2.8	11
18	Morphology, topography, and crystal rotation during surface crystallization of BaO/SrO/ZnO/SiO2 glass. CrystEngComm, 2019, 21, 1320-1328.	1.3	6

#	Article	IF	Citations
19	Crystallization of Ba1-xSrxZn2Si2O7 from the BaO/SrO/ZnO/SiO2 glass system: Effect of platinum and Sb2O3 on nucleation. Journal of Alloys and Compounds, 2019, 793, 705-714.	2.8	7
20	Silver-enhanced nucleation and morphology control of surface crystallized Ba0.5Sr0.5Zn2Si2O7 from 8 BaO·8 SrO·34 ZnO·50 SiO2 glass. Ceramics International, 2019, 45, 18760-18766.	2.3	3
21	Hindering the Kinetic Selection of Dendritic Ba-Fresnoite by Phase Separation in a Glass of the Near-Eutectic Composition Ba2TiSi2O8–2.625SiO2. Crystal Growth and Design, 2019, 19, 3559-3566.	1.4	4
22	Surface and bulk crystallization of Ba1-xSrxZn2Si2O7 from glasses in the system BaO/SrO/ZnO/SiO2 doped with Nb2O5 or Ta2O5. Ceramics International, 2019, 45, 7580-7587.	2.3	5
23	Redox effects and formation of gold nanoparticles for the nucleation of low thermal expansion phases from BaO/SrO/ZnO/SiO ₂ glasses. RSC Advances, 2018, 8, 6267-6277.	1.7	19
24	Oriented surface nucleation and crystal growth in a 18BaO·22CaO·60SiO ₂ mol% glass used for SOFC seals. CrystEngComm, 2018, 20, 787-795.	1.3	12
25	Oriented Nucleation and Crystal Growth of Ba-Fresnoite (Ba ₂ TiSi ₂ O ₈) in 2 BaO·TiO ₂ ·2 SiO ₂ Glasses with Additional SiO ₂ . Crystal Growth and Design, 2018, 18, 3202-3208.	1.4	18
26	Oriented nucleation and crystal growth in SrOâ€"Al ₂ O ₃ â€"SiO ₂ tectosilicate glasses. CrystEngComm, 2018, 20, 3455-3466.	1.3	16
27	Evidence of epitaxial growth of high-quartz solid solution on ZrTiO4 nuclei in a Li2O-Al2O3-SiO2 glass. Journal of Alloys and Compounds, 2018, 748, 73-79.	2.8	19
28	Effect of Al2O3 on phase formation and thermal expansion of a BaO-SrO-ZnO-SiO2 glass ceramic. Ceramics International, 2018, 44, 2098-2108.	2.3	7
29	Structure Prediction of Rare Earth Doped BaO and MgO Containing Aluminosilicate Glasses–the Model Case of Gd2O3. Materials, 2018, 11, 1790.	1.3	9
30	Oriented nucleation and crystal growth of Ge-fresnoite (Ba ₂ TiGe ₂ O ₈) in 2BaO·TiO ₂ ·2GeO ₂ glasses with additional GeO ₂ . CrystEngComm, 2018, 20, 5409-5421.	1.3	7
31	Oriented nucleation and crystal growth of Sr-fresnoite (Sr ₂ TiSi ₂ Ocsub>8) in 2SrO·TiO ₂ ·2SiO ₂ glasses with additional SiO ₂ . CrystEngComm, 2018, 20, 3234-3245.	1.3	10
32	The effect of different platinum concentrations as nucleation agent in the BaO/SrO/ZnO/SiO2 glass system. Journal of Materials Science, 2018, 53, 11204-11215.	1.7	5
33	Fresnoite glass-ceramics – A review. Progress in Materials Science, 2018, 98, 68-107.	16.0	51
34	WO ₃ as a nucleating agent for BaO/SrO/ZnO/SiO ₂ glasses – experiments and simulations. CrystEngComm, 2018, 20, 4565-4574.	1.3	10
35	Crystallization and microstructure of a glass seal for rapid laser sealing in the system CaO/Al2O3/SiO2. Journal of Materials Science, 2018, 53, 16207-16219.	1.7	3
36	Growing Oriented Layers of Bi4Ti3O12 in Bi2O3/TiO2/SiO2/Nd2O3/Al2O3 Glass-Ceramics by Melt Quenching. Scientific Reports, 2018, 8, 8639.	1.6	10

#	Article	IF	CITATIONS
37	A glass in the CaO/MgO/Al 2 O 3 /SiO 2 System for the rapid laser sealing of alumina. Ceramics International, 2017, 43, 4302-4308.	2.3	24
38	The effect of ZrO2 on the crystallization of a glass in the system BaO/SrO/ZnO/SiO2: surface versus bulk crystallization. Journal of Materials Science, 2017, 52, 4052-4060.	1.7	23
39	High-strength, translucent glass-ceramics in the system MgO-ZnO-Al 2 O 3 -SiO 2 -ZrO 2. Journal of the European Ceramic Society, 2017, 37, 2685-2694.	2.8	40
40	Phase formation, crystal orientations and epitaxy in Bi ₂ O ₃ /TiO ₂ /SiO ₂ (/Nd ₂ O ₃) glass ceramics. CrystEngComm, 2017, 19, 2775-2785.	1.3	7
41	Crystallizing glass seals in the system BaO/ZnO/SiO2 with high coefficients of thermal expansion. Journal of Materials Science, 2017, 52, 1789-1796.	1.7	5
42	Surface Crystallization of a MgO/Y2O3/SiO2/Al2O3/ZrO2 Glass: Growth of an Oriented \hat{l}^2 -Y2Si2O7 Layer and Epitaxial ZrO2. Scientific Reports, 2017, 7, 44144.	1.6	25
43	Surface crystallization of low thermal expansion Ba _{0.5} Sr _{0.5} Z ZSi ₂ O ₇ from an 8 BaO·8 SrO·34 ZnO·50 SiO ₂ glass. RSC Advances, 2017, 7, 44834-44842.	1.7	24
44	Strengthening of a zinc silicate glass by surface crystallization. Materials Letters, 2017, 207, 41-43.	1.3	9
45	Phase formation during crystallization of a Li2O-Al2O3-SiO2 glass with ZrO2 as nucleating agent – An X-ray diffraction and (S)TEM-study. Ceramics International, 2017, 43, 9769-9777.	2.3	51
46	Phase formation and microstructure during laser sintering and crystallization of a 4.2 MgO·5.0 ZnO·44.1 CaO·26.7 Al2O3·20.0 SiO2 glass. Journal of Materials Science, 2017, 52, 9344-9354.	1.7	2
47	Experimental evidence concerning the significant information depth of electron backscatter diffraction (EBSD). Ultramicroscopy, 2017, 173, 1-9.	0.8	41
48	Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O–K2O–CaO–CaF2–Al2O3–ZnO–SiO2 glass. Journal of Materials Science, 2017, 52, 13390-134	0 ^{1.7}	12
49	Negative Thermal Expansion in Ba0.5Sr0.5Zn2SiGeO7. Materials, 2016, 9, 631.	1.3	10
50	An experimental viewpoint on the information depth of EBSD. Scanning, 2016, 38, 164-171.	0.7	31
51	Sealing of alumina using a CO2 laser and a rapidly crystallizing glass. Journal of Materials Processing Technology, 2016, 233, 206-211.	3.1	12
52	New Family of Materials with Negative Coefficients of Thermal Expansion: The Effect of MgO, CoO, MnO, NiO, or CuO on the Phase Stability and Thermal Expansion of Solid Solution Phases Derived from BaZn ₂ Si ₂ O ₇ . Inorganic Chemistry, 2016, 55, 4476-4484.	1.9	25
53	The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses. Scientific Reports, 2016, 6, 25451.	1.6	55
54	Thermal Expansion of Sintered Glass Ceramics in the System BaO–SrO–ZnO–SiO ₂ and Its Dependence on Particle Size. ACS Applied Materials & Dependence on Particle Size.	4.0	20

#	Article	IF	Citations
55	Ba1â^'xSrxZn2Si2O7 - A new family of materials with negative and very high thermal expansion. Scientific Reports, 2016, 5, 18040.	1.6	54
56	Oriented Nucleation of both Ge-Fresnoite and Benitoite/BaGe4O9 during the Surface Crystallisation of Glass Studied by Electron Backscatter Diffraction. Scientific Reports, 2016, 6, 20125.	1.6	15
57	Oriented growth of a β-quartz solid solution from a MgO–Al ₂ O ₃ –SiO ₂ glass coated by a sol–gel ZrO ₂ layer. CrystEngComm, 2016, 18, 5492-5501.	1.3	12
58	Sol–gel powder synthesis and preparation of ceramics with high- and low-temperature polymorphs of Ba Sr1-Zn2Si2O7 (x= 1 and 0.5): A novel approach to obtain zero thermal expansion. Journal of the European Ceramic Society, 2016, 36, 2097-2107.	2.8	17
59	Very high or close to zero thermal expansion by the variation of the Sr/Ba ratio in Ba _{1â°'x} Sr _x Zn ₂ Si ₂ O ₇ â€" solid solutions. Dalton Transactions, 2016, 45, 4888-4895.	1.6	32
60	New Aluminosilicate Glasses as Highâ€Power Laser Materials. International Journal of Applied Glass Science, 2015, 6, 210-219.	1.0	18
61	Investigation of Yb ³⁺ -doped alumino-silicate glasses for high energy class diode pumped solid state lasers. Proceedings of SPIE, 2015, , .	0.8	5
62	The effect of niobium- and tantalum oxide on nucleation and growth kinetics in lithium disilicate glasses. Materials Chemistry and Physics, 2015, 162, 354-363.	2.0	14
63	Oriented crystallization of a \hat{l}^2 -Quartz Solid Solution from a MgO/Al ₂ 0 ₃ /SiO ₂ glass in contact with tetragonal ZrO ₂ 215171.	1.7	24
64	High thermal expansion in the solid solution series BaM2â^'x Ni x Si2O7 (MÂ=ÂZn, Mg, Co)-the effect of Ni-concentration on phase transition and expansion. Journal of Materials Science, 2015, 50, 3416-3424.	1.7	20
65	Macroscopic glass-permeated single-crystals of fresnoite. CrystEngComm, 2015, 17, 5019-5025.	1.3	8
66	Young \times^3 s modulus, Vickers hardness and indentation fracture toughness of alumino silicate glasses. Ceramics International, 2015, 41, 7267-7275.	2.3	73
67	Microstructure of Transparent Strontium Fresnoite Glass-Ceramics. Scientific Reports, 2015, 5, 9069.	1.6	28
68	Photo-acoustic spectroscopy and quantum efficiency of Yb3+ doped alumino silicate glasses. Journal of Applied Physics, 2015, 118, .	1.1	11
69	ASAXS study of CaF2nanoparticles embedded in a silicate glass matrix. Journal of Applied Crystallography, 2014, 47, 60-66.	1.9	35
70	Fluorescence and thermal stress properties of Yb ³⁺ -doped alumino silicate glasses for ultra high peak power laser applications. Laser Physics Letters, 2014, 11, 115811.	0.6	18
71	Cobalt containing crystallizing glass seals for solid oxide fuel cells – A new strategy for strong adherence to metals and high thermal expansion. Journal of Power Sources, 2014, 258, 182-188.	4.0	22
72	Fluorescence properties of Eu3+-doped alumino silicate glasses. Optical Materials, 2014, 37, 293-297.	1.7	35

#	Article	IF	CITATIONS
73	Complex growth structures of mullite after electrochemically induced nucleation. CrystEngComm, 2014, 16, 1192.	1.3	10
74	Crystallization of ZrTiO ₄ Nanocrystals in Lithium-Alumino-Silicate Glass Ceramics: Anomalous Small-Angle X-ray Scattering Investigation. Crystal Growth and Design, 2014, 14, 2838-2845.	1.4	29
75	Structure and fluorescence properties of ternary aluminosilicate glasses doped with samarium and europium. Journal of Materials Chemistry C, 2014, 2, 4328-4337.	2.7	46
76	Optical properties of palladium nanoparticles under exposure of hydrogen and inert gas prepared by dewetting synthesis of thin-sputtered layers. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	15
77	Preparation and luminescence properties of glass–ceramics containing Sm3+-doped hexagonal NaGdF4 crystals. Journal of Materials Science, 2013, 48, 6262-6268.	1.7	29
78	Cubic and Hexagonal NaGdF ₄ Crystals Precipitated from an Aluminosilicate Glass: Preparation and Luminescence Properties. Chemistry of Materials, 2013, 25, 2878-2884.	3.2	108
79	Optical properties of dewetted thin silver/gold multilayer films on glass substrates. Thin Solid Films, 2013, 539, 47-54.	0.8	16
80	Surface Crystallization of Fresnoite from a Glass Studied by Hot Stage Scanning Electron Microscopy and Electron Backscatter Diffraction. Crystal Growth and Design, 2013, 13, 3794-3800.	1.4	22
81	Growth mechanisms of surface crystallized diopside. CrystEngComm, 2013, 15, 6381.	1.3	18
82	Viscous Fingering and Dendritic Growth of Surface Crystallized Sr2TiSi2O8 Fresnoite. Scientific Reports, 2013, 3, 3558.	1.6	31
83	The formation of strontium fluoride nano crystals from a phase separated silicate glass. Journal of the European Ceramic Society, 2013, 33, 1737-1745.	2.8	33
84	Stress induced texture formation in surface crystallized SiO2 glass. CrystEngComm, 2013, 15, 2392.	1.3	20
85	Transparent Nano Crystalline Glass eramics by Interface Controlled Crystallization. International Journal of Applied Glass Science, 2013, 4, 174-181.	1.0	37
86	EBSD and EDX Analyses of a Multiphase Glass-Ceramic Obtained by Crystallizing an Yttrium Aluminosilicate Glass. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8531-8536.	4.0	30
87	Dendritic growth of yttrium aluminum garnet from an oxide melt in the system SiO2/Al2O3/Y2O3/CaO. CrystEngComm, 2012, 14, 6904.	1.3	42
88	Experimental evidence of a diffusion barrier around BaF2 nanocrystals in a silicate glass system by ASAXS. CrystEngComm, 2012, 14, 5215.	1.3	44
89	A Global Glassy Layer on BaAl ₂ B ₂ O ₇ Crystals Formed during Surface Crystallization of BaO·Al ₂ O ₃ A·B ₂ O ₃ Glass. Crystall Growth and Design, 2012, 12, 1586-1592.	1.4	26
90	Piezoelectric glass-ceramics produced via oriented growth of Sr2TiSi2O8 fresnoite: thermal annealing of surface modified quenched glasses. CrystEngComm, 2012, 14, 7368.	1.3	25

#	Article	IF	Citations
91	Sr-fresnoite surface crystallisation in a 2SrO·TiO2·2.75 SiO2 glass studied by EBSD. CrystEngComm, 2012, 14, 5425.	1.3	46
92	Oriented Nucleation of Diopside Crystals in Glass. Crystal Growth and Design, 2012, 12, 5035-5041.	1.4	40
93	Gold nano-particles fixed on glass. Applied Surface Science, 2012, 258, 8506-8513.	3.1	19
94	Temporal Evolution of Crystallization in MgO–Al ₂ 33–SiO ₂ –ZrO ₂ Glass Ceramics. Crystal Growth and Design, 2012, 12, 2059-2067.	1.4	59
95	The effect of viscosity on the kinetics of redox reactions in highly viscous silicate liquids. Journal of Chemical Physics, 2012, 136, 224502.	1.2	3
96	Thermal expansion of Ba2ZnSi2O7, BaZnSiO4 and the solid solution series BaZn2â^'xMgxSi2O7 (0â‰ x â‰ 2) studied by high-temperature X-ray diffraction and dilatometry. Journal of Solid State Chemistry, 2012, 188, 84-91.	1.4	48
97	Colorless and high strength MgO/Al ₂ O ₃ /SiO ₂ glass–ceramic dental material using zirconia as nucleating agent. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 463-470.	1.6	59
98	Composition and texture of barium silicate crystals in fresnoite glass-ceramics by various scanning electron microscopic techniques. CrystEngComm, 2011, 13, 3383.	1.3	14
99	Surface Crystallization of Cordierite from Glass Studied by High-Temperature X-ray Diffraction and Electron Backscatter Diffraction (EBSD). Crystal Growth and Design, 2011, 11, 4660-4666.	1.4	37
100	The crystallization of (Pb, Yb, Er)Fx nano particles from glasses with the composition 20 SiO2â ^{↑™} 13.5 B2O3â ^{↑™} 6 Al2O3â ^{↑™} 10 PbOâ ^{↑™} 6.6 CdO 20 PbF2â ^{↑™} 13.3 CdF2â ^{↑™} 10 YbF3â ^{↑™} 0.5 ErF3. Solid State Sciences,	20 ¹ . ¹ , 13,	11 ¹³ 2-1136.
101	Crystallization and mechanical properties of MgO/Al2O3/SiO2/ZrO2 glass-ceramics with and without the addition of yttria. Solid State Sciences, 2011, 13, 2146-2153.	1.5	62
102	The degradation of EBSD-patterns as a tool to investigate surface crystallized glasses and to identify glassy surface layers. Ultramicroscopy, 2011, 111, 1712-1719.	0.8	34
103	The effect of stresses during crystallization on the crystallite size distributions. Journal of the European Ceramic Society, 2011, 31, 2861-2866.	2.8	10
104	Binary, ternary and quaternary silicates of CaO, BaO and ZnO in high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). Materials Research Bulletin, 2011, 46, 2456-2463.	2.7	44
105	Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). Journal of Power Sources, 2011, 196, 7578-7584.	4.0	67
106	Viscosity and diffusion of barium and fluoride in Na2O/K2O/Al2O3/SiO2/BaF2 glasses. Chemical Physics, 2010, 369, 96-100.	0.9	30
107	Experimental evidence of high pressure during crystallization of glass – The formation of an orthorhombic high-pressure BaF2 phase. Scripta Materialia, 2010, 62, 814-817.	2.6	23
108	Formation of nano-crystalline quartz crystals from ZnO/MgO/Al2O3/TiO2/ZrO2/SiO2 glasses. Solid State Sciences, 2010, 12, 1570-1574.	1.5	51

#	Article	IF	CITATIONS
109	The effect of Er3+ and Sm3+ on phase separation and crystallization in Na2O/K2O/BaF2/BaO/Al2O3/SiO2 glasses. Solid State Sciences, 2010, 12, 2086-2090.	1.5	30
110	Redox Relaxation in Glass Melts Doped with Copper and Arsenic. Journal of the American Ceramic Society, 2010, 93, 1032-1038.	1.9	5
111	Electron Backscatter Diffraction of Fresnoite Crystals Grown from the Surface of a 2BaO·TiO ₂ ·2.75SiO ₂ Glass. Crystal Growth and Design, 2010, 10, 1414-1418.	1.4	57
112	Reactions during Electrochemically Induced Nucleation of Mullite from a MgO/Al ₂ O ₃ /TiO ₂ /SiO ₂ /B ₂ O ₃ /CaO Melt. Crystal Growth and Design, 2010, 10, 3257-3262.	1.4	12
113	New Insights into the Microstructure of Oriented Fresnoite Dendrites in the System Ba ₂ TiSi ₂ O ₈ â^'SiO ₂ Through Electron Backscatter Diffraction (EBSD). Crystal Growth and Design, 2010, 10, 1939-1945.	1.4	40
114	Electron backscatter diffraction of BaAl2B2O7 crystals grown from the surface of a BaO·Al2O3·B2O3 glass. CrystEngComm, 2010, 12, 3105.	1.3	32
115	Self-organized nano-crystallisation of BaF2 from Na2O/K2O/BaF2/Al2O3/SiO2 glasses. Journal of the European Ceramic Society, 2009, 29, 1221-1225.	2.8	108
116	Size distribution of BaF2 nanocrystallites in transparent glass ceramics. Acta Materialia, 2009, 57, 5956-5963.	3.8	98
117	Experimental Evidence of Self-Limited Growth of Nanocrystals in Glass. Nano Letters, 2009, 9, 2493-2496.	4.5	147
118	Redox reactions during temperature change in soda-lime–silicate melts doped with copper and iron or copper and manganese. Journal of Non-Crystalline Solids, 2006, 352, 4062-4068.	1.5	15
119	Nanocrystallization of CaF2from Na2O/K2O/CaO/CaF2/Al2O3/SiO2Glasses. Chemistry of Materials, 2005, 17, 5843-5847.	3.2	159
120	Oriented lithium disilicate glass–ceramics prepared by electrochemically induced nucleation. Journal of Non-Crystalline Solids, 2005, 351, 656-662.	1.5	21
121	The mechanism of electrochemically induced nucleation in glass melts with the composition 2BaO·TiO2·2.75SiO2. Journal of Non-Crystalline Solids, 2005, 351, 1441-1446.	1.5	30
122	Glass–ceramics with zero thermal expansion in the system BaO/Al2O3/B2O3. Journal of Non-Crystalline Solids, 2005, 351, 2294-2298.	1.5	37
123	Thermal expansion of glass–ceramics in the system BaO/Al2O3/B2O3. Journal of Non-Crystalline Solids, 2005, 351, 3483-3489.	1.5	8
124	Silver ion exchange in glasses of the system Na2O/Al2O3/B2O3/SiO2. Journal of Non-Crystalline Solids, 2004, 347, 121-127.	1.5	13
125	The effect of glass composition on the thermodynamics of the Fe2+/Fe3+ equilibrium and the iron diffusivity in Na2O/MgO/CaO/Al2O3/SiO2 melts. Chemical Geology, 2004, 213, 125-135.	1.4	51
126	Oriented fluororichterite/diopsid glass-ceramics prepared by electrochemically induced nucleation. Journal of Non-Crystalline Solids, 2001, 283, 137-143.	1.5	15

#	Article	IF	CITATIONS
127	Oriented glass-ceramics containing fresnoite prepared by electrochemical nucleation of a BaO–TiO2–SiO2–B2O3 melt. Journal of Non-Crystalline Solids, 2000, 278, 7-12.	1.5	33
128	Oriented calcium metaphosphate glass-ceramics. Journal of Materials Research, 1999, 14, 3983-3987.	1.2	8
129	A voltammetric study of the Ag+/Ag0-equilibrium in soda-alumina-silicate melts. Journal of Molecular Liquids, 1999, 83, 295-302.	2.3	15
130	Oriented growth of mullite from a glass melt using electrochemical nucleation. Journal of Non-Crystalline Solids, 1999, 243, 109-115.	1.5	18
131	Partial Stabilization of Tetragonal Zirconia in Oxynitride Glass eramics. Journal of the American Ceramic Society, 1998, 81, 2029-2036.	1.9	22
132	Thermodynamics of various polyvalent main group elements in a borosilicate glass melt. Journal of Non-Crystalline Solids, 1997, 209, 292-298.	1.5	26
133	Self diffusion of polyvalent ions in a borosilicate glass melt. Journal of Non-Crystalline Solids, 1997, 215, 68-74.	1.5	37
134	Electrochemical nucleation for the preparation of oriented glass ceramics. Journal of Non-Crystalline Solids, 1997, 219, 136-141.	1.5	73
135	Self diffusion of polyvalent ions in a soda-lime-silica glass melt. Journal of Non-Crystalline Solids, 1991, 134, 169-175.	1.5	42
136	Electron Microscopic Investigations of Electrochemically Induced Mullite Crystallization in a Glassy Matrix. Advanced Materials Research, 0, 39-40, 387-390.	0.3	6
137	Comparative study of the crystallization behavior within the Na ₂ 0â€"Y ₂ Osub>3â€"ZrO ₂ â€"SiO ₂ system during heating and cooling. CrystEngComm, 0, , .	1.3	1