Christian Rüssel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1868204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocrystallization of CaF2from Na2O/K2O/CaO/CaF2/Al2O3/SiO2Glasses. Chemistry of Materials, 2005, 17, 5843-5847.	3.2	159
2	Experimental Evidence of Self-Limited Growth of Nanocrystals in Glass. Nano Letters, 2009, 9, 2493-2496.	4.5	147
3	Self-organized nano-crystallisation of BaF2 from Na2O/K2O/BaF2/Al2O3/SiO2 glasses. Journal of the European Ceramic Society, 2009, 29, 1221-1225.	2.8	108
4	Cubic and Hexagonal NaGdF ₄ Crystals Precipitated from an Aluminosilicate Glass: Preparation and Luminescence Properties. Chemistry of Materials, 2013, 25, 2878-2884.	3.2	108
5	Size distribution of BaF2 nanocrystallites in transparent glass ceramics. Acta Materialia, 2009, 57, 5956-5963.	3.8	98
6	Electrochemical nucleation for the preparation of oriented glass ceramics. Journal of Non-Crystalline Solids, 1997, 219, 136-141.	1.5	73
7	Young׳s modulus, Vickers hardness and indentation fracture toughness of alumino silicate glasses. Ceramics International, 2015, 41, 7267-7275.	2.3	73
8	Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). Journal of Power Sources, 2011, 196, 7578-7584.	4.0	67
9	Crystallization and mechanical properties of MgO/Al2O3/SiO2/ZrO2 glass-ceramics with and without the addition of yttria. Solid State Sciences, 2011, 13, 2146-2153.	1.5	62
10	Temporal Evolution of Crystallization in MgO–Al ₂ O ₃ –SiO ₂ –ZrO ₂ Glass Ceramics. Crystal Growth and Design, 2012, 12, 2059-2067.	1.4	59
11	Colorless and high strength MgO/Al ₂ O ₃ /SiO ₂ glass–ceramic dental material using zirconia as nucleating agent. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 463-470.	1.6	59
12	Electron Backscatter Diffraction of Fresnoite Crystals Grown from the Surface of a 2BaO·TiO ₂ ·2.75SiO ₂ Glass. Crystal Growth and Design, 2010, 10, 1414-1418.	1.4	57
13	The mechanism of deceleration of nucleation and crystal growth by the small addition of transition metals to lithium disilicate glasses. Scientific Reports, 2016, 6, 25451.	1.6	55
14	Ba1â^'xSrxZn2Si2O7 - A new family of materials with negative and very high thermal expansion. Scientific Reports, 2016, 5, 18040.	1.6	54
15	The effect of glass composition on the thermodynamics of the Fe2+/Fe3+ equilibrium and the iron diffusivity in Na2O/MgO/CaO/Al2O3/SiO2 melts. Chemical Geology, 2004, 213, 125-135.	1.4	51
16	Formation of nano-crystalline quartz crystals from ZnO/MgO/Al2O3/TiO2/ZrO2/SiO2 glasses. Solid State Sciences, 2010, 12, 1570-1574.	1.5	51
17	Phase formation during crystallization of a Li2O-Al2O3-SiO2 glass with ZrO2 as nucleating agent – An X-ray diffraction and (S)TEM-study. Ceramics International, 2017, 43, 9769-9777.	2.3	51
18	Fresnoite glass-ceramics – A review. Progress in Materials Science, 2018, 98, 68-107.	16.0	51

#	Article	IF	CITATIONS
19	Thermal expansion of Ba2ZnSi2O7, BaZnSiO4 and the solid solution series BaZn2â^'xMgxSi2O7 (0≤â‰⊉) studied by high-temperature X-ray diffraction and dilatometry. Journal of Solid State Chemistry, 2012, 188, 84-91.	1.4	48
20	Sr-fresnoite surface crystallisation in a 2SrO·TiO2·2.75 SiO2 glass studied by EBSD. CrystEngComm, 2012, 14, 5425.	1.3	46
21	Structure and fluorescence properties of ternary aluminosilicate glasses doped with samarium and europium. Journal of Materials Chemistry C, 2014, 2, 4328-4337.	2.7	46
22	Binary, ternary and quaternary silicates of CaO, BaO and ZnO in high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). Materials Research Bulletin, 2011, 46, 2456-2463.	2.7	44
23	Experimental evidence of a diffusion barrier around BaF2 nanocrystals in a silicate glass system by ASAXS. CrystEngComm, 2012, 14, 5215.	1.3	44
24	Self diffusion of polyvalent ions in a soda-lime-silica glass melt. Journal of Non-Crystalline Solids, 1991, 134, 169-175.	1.5	42
25	Dendritic growth of yttrium aluminum garnet from an oxide melt in the system SiO2/Al2O3/Y2O3/CaO. CrystEngComm, 2012, 14, 6904.	1.3	42
26	Experimental evidence concerning the significant information depth of electron backscatter diffraction (EBSD). Ultramicroscopy, 2017, 173, 1-9.	0.8	41
27	New Insights into the Microstructure of Oriented Fresnoite Dendrites in the System Ba ₂ TiSi ₂ O ₈ â^'SiO ₂ Through Electron Backscatter Diffraction (EBSD). Crystal Growth and Design, 2010, 10, 1939-1945.	1.4	40
28	Oriented Nucleation of Diopside Crystals in Glass. Crystal Growth and Design, 2012, 12, 5035-5041.	1.4	40
29	High-strength, translucent glass-ceramics in the system MgO-ZnO-Al 2 O 3 -SiO 2 -ZrO 2. Journal of the European Ceramic Society, 2017, 37, 2685-2694.	2.8	40
30	Self diffusion of polyvalent ions in a borosilicate glass melt. Journal of Non-Crystalline Solids, 1997, 215, 68-74.	1.5	37
31	Glass–ceramics with zero thermal expansion in the system BaO/Al2O3/B2O3. Journal of Non-Crystalline Solids, 2005, 351, 2294-2298.	1.5	37
32	Surface Crystallization of Cordierite from Glass Studied by High-Temperature X-ray Diffraction and Electron Backscatter Diffraction (EBSD). Crystal Growth and Design, 2011, 11, 4660-4666.	1.4	37
33	Transparent Nano Crystalline Glassâ€Ceramics by Interface Controlled Crystallization. International Journal of Applied Glass Science, 2013, 4, 174-181.	1.0	37
34	ASAXS study of CaF2nanoparticles embedded in a silicate glass matrix. Journal of Applied Crystallography, 2014, 47, 60-66.	1.9	35
35	Fluorescence properties of Eu3+-doped alumino silicate glasses. Optical Materials, 2014, 37, 293-297.	1.7	35
36	The degradation of EBSD-patterns as a tool to investigate surface crystallized glasses and to identify glassy surface layers. Ultramicroscopy, 2011, 111, 1712-1719.	0.8	34

#	Article	IF	CITATIONS
37	Oriented glass-ceramics containing fresnoite prepared by electrochemical nucleation of a BaO–TiO2–SiO2–B2O3 melt. Journal of Non-Crystalline Solids, 2000, 278, 7-12.	1.5	33
38	The formation of strontium fluoride nano crystals from a phase separated silicate glass. Journal of the European Ceramic Society, 2013, 33, 1737-1745.	2.8	33
39	Electron backscatter diffraction of BaAl2B2O7 crystals grown from the surface of a BaO·Al2O3·B2O3 glass. CrystEngComm, 2010, 12, 3105.	1.3	32
40	Very high or close to zero thermal expansion by the variation of the Sr/Ba ratio in Ba _{1â^'x} Sr _x Zn ₂ Si ₂ O ₇ – solid solutions. Dalton Transactions, 2016, 45, 4888-4895.	1.6	32
41	Viscous Fingering and Dendritic Growth of Surface Crystallized Sr2TiSi2O8 Fresnoite. Scientific Reports, 2013, 3, 3558.	1.6	31
42	An experimental viewpoint on the information depth of EBSD. Scanning, 2016, 38, 164-171.	0.7	31
43	The mechanism of electrochemically induced nucleation in glass melts with the composition 2BaO·TiO2·2.75SiO2. Journal of Non-Crystalline Solids, 2005, 351, 1441-1446.	1.5	30
44	Viscosity and diffusion of barium and fluoride in Na2O/K2O/Al2O3/SiO2/BaF2 glasses. Chemical Physics, 2010, 369, 96-100.	0.9	30
45	The effect of Er3+ and Sm3+ on phase separation and crystallization in Na2O/K2O/BaF2/BaO/Al2O3/SiO2 glasses. Solid State Sciences, 2010, 12, 2086-2090.	1.5	30
46	EBSD and EDX Analyses of a Multiphase Glass-Ceramic Obtained by Crystallizing an Yttrium Aluminosilicate Glass. ACS Applied Materials & Interfaces, 2013, 5, 8531-8536.	4.0	30
47	Preparation and luminescence properties of glass–ceramics containing Sm3+-doped hexagonal NaGdF4 crystals. Journal of Materials Science, 2013, 48, 6262-6268.	1.7	29
48	Crystallization of ZrTiO ₄ Nanocrystals in Lithium-Alumino-Silicate Glass Ceramics: Anomalous Small-Angle X-ray Scattering Investigation. Crystal Growth and Design, 2014, 14, 2838-2845.	1.4	29
49	Microstructure of Transparent Strontium Fresnoite Glass-Ceramics. Scientific Reports, 2015, 5, 9069.	1.6	28
50	Thermodynamics of various polyvalent main group elements in a borosilicate glass melt. Journal of Non-Crystalline Solids, 1997, 209, 292-298.	1.5	26
51	A Global Glassy Layer on BaAl ₂ B ₂ O ₇ Crystals Formed during Surface Crystallization of BaOAAl ₂ O ₃ AB ₂ O ₃ Crystal Growth and Design, 2012, 12, 1586-1592.	1.4	26
52	Piezoelectric glass-ceramics produced via oriented growth of Sr2TiSi2O8 fresnoite: thermal annealing of surface modified quenched glasses. CrystEngComm, 2012, 14, 7368.	1.3	25
53	New Family of Materials with Negative Coefficients of Thermal Expansion: The Effect of MgO, CoO, MnO, NiO, or CuO on the Phase Stability and Thermal Expansion of Solid Solution Phases Derived from BaZn ₂ Si ₂ O ₇ . Inorganic Chemistry, 2016, 55, 4476-4484.	1.9	25
54	Surface Crystallization of a MgO/Y2O3/SiO2/Al2O3/ZrO2 Glass: Growth of an Oriented β-Y2Si2O7 Layer and Epitaxial ZrO2. Scientific Reports, 2017, 7, 44144.	1.6	25

#	Article	IF	CITATIONS
55	Oriented crystallization of a β-Quartz Solid Solution from a MgO/Al ₂ O ₃ /SiO ₂ glass in contact with tetragonal ZrO ₂ ceramics. RSC Advances, 2015, 5, 15164-15171.	1.7	24
56	A glass in the CaO/MgO/Al 2 O 3 /SiO 2 System for the rapid laser sealing of alumina. Ceramics International, 2017, 43, 4302-4308.	2.3	24
57	Surface crystallization of low thermal expansion Ba _{0.5} Sr _{0.5} Zr ₂ Si ₂ O ₇ from an 8 BaO·8 SrO·34 ZnO·50 SiO ₂ glass. RSC Advances, 2017, 7, 44834-44842.	1.7	24
58	Experimental evidence of high pressure during crystallization of glass – The formation of an orthorhombic high-pressure BaF2 phase. Scripta Materialia, 2010, 62, 814-817.	2.6	23
59	The effect of ZrO2 on the crystallization of a glass in the system BaO/SrO/ZnO/SiO2: surface versus bulk crystallization. Journal of Materials Science, 2017, 52, 4052-4060.	1.7	23
60	Partial Stabilization of Tetragonal Zirconia in Oxynitride Glass eramics. Journal of the American Ceramic Society, 1998, 81, 2029-2036.	1.9	22
61	Surface Crystallization of Fresnoite from a Class Studied by Hot Stage Scanning Electron Microscopy and Electron Backscatter Diffraction. Crystal Growth and Design, 2013, 13, 3794-3800.	1.4	22
62	Cobalt containing crystallizing glass seals for solid oxide fuel cells – A new strategy for strong adherence to metals and high thermal expansion. Journal of Power Sources, 2014, 258, 182-188.	4.0	22
63	Oriented lithium disilicate glass–ceramics prepared by electrochemically induced nucleation. Journal of Non-Crystalline Solids, 2005, 351, 656-662.	1.5	21
64	Stress induced texture formation in surface crystallized SiO2 glass. CrystEngComm, 2013, 15, 2392.	1.3	20
65	High thermal expansion in the solid solution series BaM2â^'x Ni x Si2O7 (MÂ=ÂZn, Mg, Co)-the effect of Ni-concentration on phase transition and expansion. Journal of Materials Science, 2015, 50, 3416-3424.	1.7	20
66	Thermal Expansion of Sintered Glass Ceramics in the System BaO–SrO–ZnO–SiO ₂ and Its Dependence on Particle Size. ACS Applied Materials & Interfaces, 2016, 8, 20212-20219.	4.0	20
67	Gold nano-particles fixed on glass. Applied Surface Science, 2012, 258, 8506-8513.	3.1	19
68	Redox effects and formation of gold nanoparticles for the nucleation of low thermal expansion phases from BaO/SrO/ZnO/SiO ₂ glasses. RSC Advances, 2018, 8, 6267-6277.	1.7	19
69	Evidence of epitaxial growth of high-quartz solid solution on ZrTiO4 nuclei in a Li2O-Al2O3-SiO2 glass. Journal of Alloys and Compounds, 2018, 748, 73-79.	2.8	19
70	Oriented growth of mullite from a glass melt using electrochemical nucleation. Journal of Non-Crystalline Solids, 1999, 243, 109-115.	1.5	18
71	Growth mechanisms of surface crystallized diopside. CrystEngComm, 2013, 15, 6381.	1.3	18
72	Fluorescence and thermal stress properties of Yb ³⁺ -doped alumino silicate glasses for ultra high peak power laser applications. Laser Physics Letters, 2014, 11, 115811.	0.6	18

#	Article	IF	CITATIONS
73	New Aluminosilicate Glasses as Highâ€Power Laser Materials. International Journal of Applied Glass Science, 2015, 6, 210-219.	1.0	18
74	Oriented Nucleation and Crystal Growth of Ba-Fresnoite (Ba ₂ TiSi ₂ O ₈) in 2 BaO·TiO ₂ ·2 SiO ₂ Glasses with Additional SiO ₂ . Crystal Growth and Design, 2018, 18, 3202-3208.	1.4	18
75	Sol–gel powder synthesis and preparation of ceramics with high- and low-temperature polymorphs of Ba Sr1-Zn2Si2O7 (x= 1 and 0.5): A novel approach to obtain zero thermal expansion. Journal of the European Ceramic Society, 2016, 36, 2097-2107.	2.8	17
76	Oriented surface nucleation in inorganic glasses – A review. Progress in Materials Science, 2021, 118, 100758.	16.0	17
77	Optical properties of dewetted thin silver/gold multilayer films on glass substrates. Thin Solid Films, 2013, 539, 47-54.	0.8	16
78	Oriented nucleation and crystal growth in SrO–Al ₂ O ₃ –SiO ₂ tectosilicate glasses. CrystEngComm, 2018, 20, 3455-3466.	1.3	16
79	A voltammetric study of the Ag+/Ag0-equilibrium in soda-alumina-silicate melts. Journal of Molecular Liquids, 1999, 83, 295-302.	2.3	15
80	Oriented fluororichterite/diopsid glass-ceramics prepared by electrochemically induced nucleation. Journal of Non-Crystalline Solids, 2001, 283, 137-143.	1.5	15
81	Redox reactions during temperature change in soda-lime–silicate melts doped with copper and iron or copper and manganese. Journal of Non-Crystalline Solids, 2006, 352, 4062-4068.	1.5	15
82	Optical properties of palladium nanoparticles under exposure of hydrogen and inert gas prepared by dewetting synthesis of thin-sputtered layers. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	15
83	Oriented Nucleation of both Ge-Fresnoite and Benitoite/BaGe4O9 during the Surface Crystallisation of Class Studied by Electron Backscatter Diffraction. Scientific Reports, 2016, 6, 20125.	1.6	15
84	Composition and texture of barium silicate crystals in fresnoite glass-ceramics by various scanning electron microscopic techniques. CrystEngComm, 2011, 13, 3383.	1.3	14
85	The effect of niobium- and tantalum oxide on nucleation and growth kinetics in lithium disilicate glasses. Materials Chemistry and Physics, 2015, 162, 354-363.	2.0	14
86	Silver ion exchange in glasses of the system Na2O/Al2O3/B2O3/SiO2. Journal of Non-Crystalline Solids, 2004, 347, 121-127.	1.5	13
87	The crystallization of (Pb, Yb, Er)Fx nano particles from glasses with the composition 20 SiO2â^™13.5 B2O3â^™6 Al2O3â^™10 PbOâ^™6.6 CdO 20 PbF2â^™13.3 CdF2â^™10 YbF3â^™0.5 ErF3. Solid State Sciences, 2	20 <mark>1.5</mark> , 13, 1	1132-1136
88	Reactions during Electrochemically Induced Nucleation of Mullite from a MgO/Al ₂ O ₃ /TiO ₂ /SiO ₂ /B ₂ O ₃ /CaC Melt. Crystal Growth and Design, 2010, 10, 3257-3262.) 1.4	12
89	Sealing of alumina using a CO2 laser and a rapidly crystallizing glass. Journal of Materials Processing Technology, 2016, 233, 206-211.	3.1	12
90	Oriented growth of a β-quartz solid solution from a MgO–Al ₂ O ₃ –SiO ₂ glass coated by a sol–gel ZrO ₂ layer. CrystEngComm, 2016, 18, 5492-5501.	1.3	12

#	Article	IF	CITATIONS
91	Oriented surface nucleation and crystal growth in a 18BaO·22CaO·60SiO ₂ mol% glass used for SOFC seals. CrystEngComm, 2018, 20, 787-795.	1.3	12
92	Structural evolution of CaF2 nanoparticles during the photoinduced crystallization of a Na2O–K2O–CaO–CaF2–Al2O3–ZnO–SiO2 glass. Journal of Materials Science, 2017, 52, 13390-134	40 ¹ .7	12
93	Photo-acoustic spectroscopy and quantum efficiency of Yb3+ doped alumino silicate glasses. Journal of Applied Physics, 2015, 118, .	1.1	11
94	The detailed microstructure of an alumina-zirconia-silica (AZS) fused cast refractory material from the cast skin into the bulk analyzed using EBSD. Journal of the European Ceramic Society, 2019, 39, 2186-2198.	2.8	11
95	The effect of stresses during crystallization on the crystallite size distributions. Journal of the European Ceramic Society, 2011, 31, 2861-2866.	2.8	10
96	Complex growth structures of mullite after electrochemically induced nucleation. CrystEngComm, 2014, 16, 1192.	1.3	10
97	Negative Thermal Expansion in Ba0.5Sr0.5Zn2SiGeO7. Materials, 2016, 9, 631.	1.3	10
98	Oriented nucleation and crystal growth of Sr-fresnoite (Sr ₂ TiSi ₂ O ₈) in 2SrO·TiO ₂ ·2SiO ₂ glasses with additional SiO ₂ . CrystEngComm, 2018, 20, 3234-3245.	1.3	10
99	WO ₃ as a nucleating agent for BaO/SrO/ZnO/SiO ₂ glasses – experiments and simulations. CrystEngComm, 2018, 20, 4565-4574.	1.3	10
100	Growing Oriented Layers of Bi4Ti3O12 in Bi2O3/TiO2/SiO2/Nd2O3/Al2O3 Glass-Ceramics by Melt Quenching. Scientific Reports, 2018, 8, 8639.	1.6	10
101	Strengthening of a zinc silicate glass by surface crystallization. Materials Letters, 2017, 207, 41-43.	1.3	9
102	Structure Prediction of Rare Earth Doped BaO and MgO Containing Aluminosilicate Glasses–the Model Case of Gd2O3. Materials, 2018, 11, 1790.	1.3	9
103	Core–shell structures with metallic silver as nucleation agent of low expansion phases in BaO/SrO/ZnO/SiO ₂ glasses. CrystEngComm, 2019, 21, 4373-4386.	1.3	9
104	Determination of the crystallization mechanism of glasses in the system BaO/SrO/ZnO/SiO2 with differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1193-1206.	2.0	9
105	Oriented calcium metaphosphate glass-ceramics. Journal of Materials Research, 1999, 14, 3983-3987.	1.2	8
106	Thermal expansion of glass–ceramics in the system BaO/Al2O3/B2O3. Journal of Non-Crystalline Solids, 2005, 351, 3483-3489.	1.5	8
107	Macroscopic glass-permeated single-crystals of fresnoite. CrystEngComm, 2015, 17, 5019-5025.	1.3	8
108	Phase formation, crystal orientations and epitaxy in Bi ₂ O ₃ /TiO ₂ /SiO ₂ (/Nd ₂ O ₃) glass ceramics. CrystEngComm, 2017, 19, 2775-2785.	1.3	7

CHRISTIAN RüSSEL

#	Article	IF	CITATIONS
109	Effect of Al2O3 on phase formation and thermal expansion of a BaO-SrO-ZnO-SiO2 glass ceramic. Ceramics International, 2018, 44, 2098-2108.	2.3	7
110	Oriented nucleation and crystal growth of Ge-fresnoite (Ba ₂ TiGe ₂ O ₈) in 2BaO·TiO ₂ ·2GeO ₂ glasses with additional GeO ₂ . CrystEngComm, 2018, 20, 5409-5421.	1.3	7
111	Crystallization of Ba1-xSrxZn2Si2O7 from the BaO/SrO/ZnO/SiO2 glass system: Effect of platinum and Sb2O3 on nucleation. Journal of Alloys and Compounds, 2019, 793, 705-714.	2.8	7
112	Crystallization of BaF ₂ from droplets of phase separated glass – evidence of a core–shell structure by ASAXS. CrystEngComm, 2020, 22, 5031-5039.	1.3	7
113	The Structure of Gd3+-Doped Li2O and K2O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations. Materials, 2021, 14, 3265.	1.3	7
114	Electron Microscopic Investigations of Electrochemically Induced Mullite Crystallization in a Glassy Matrix. Advanced Materials Research, 0, 39-40, 387-390.	0.3	6
115	Morphology, topography, and crystal rotation during surface crystallization of BaO/SrO/ZnO/SiO2 glass. CrystEngComm, 2019, 21, 1320-1328.	1.3	6
116	How Can Surface-Crystallized Glass-Ceramics Be Piezoelectric?. Crystal Growth and Design, 2021, 21, 2405-2415.	1.4	6
117	Redox Relaxation in Glass Melts Doped with Copper and Arsenic. Journal of the American Ceramic Society, 2010, 93, 1032-1038.	1.9	5
118	Investigation of Yb ³⁺ -doped alumino-silicate glasses for high energy class diode pumped solid state lasers. Proceedings of SPIE, 2015, , .	0.8	5
119	Crystallizing glass seals in the system BaO/ZnO/SiO2 with high coefficients of thermal expansion. Journal of Materials Science, 2017, 52, 1789-1796.	1.7	5
120	The effect of different platinum concentrations as nucleation agent in the BaO/SrO/ZnO/SiO2 glass system. Journal of Materials Science, 2018, 53, 11204-11215.	1.7	5
121	Surface and bulk crystallization of Ba1-xSrxZn2Si2O7 from glasses in the system BaO/SrO/ZnO/SiO2 doped with Nb2O5 or Ta2O5. Ceramics International, 2019, 45, 7580-7587.	2.3	5
122	Microstructure transformation of a crystallized glass from the system BaOâ€&rOâ€ZnOâ€&iO ₂ . Journal of the American Ceramic Society, 2022, 105, 3544-3554.	1.9	5
123	Noble metals Pt, Au, and Ag as nucleating agents in BaO/SrO/ZnO/SiO2 glasses: formation of alloys and core–shell structures. Journal of Materials Science, 2022, 57, 6607-6618.	1.7	5
124	Hindering the Kinetic Selection of Dendritic Ba-Fresnoite by Phase Separation in a Glass of the Near-Eutectic Composition Ba2TiSi2O8–2.625SiO2. Crystal Growth and Design, 2019, 19, 3559-3566.	1.4	4
125	Tunable pore size in diopside glass-ceramics with silver nanoparticles. CrystEngComm, 2020, 22, 2238-2246.	1.3	4
126	The effect of viscosity on the kinetics of redox reactions in highly viscous silicate liquids. Journal of Chemical Physics, 2012, 136, 224502.	1.2	3

#	Article	IF	CITATIONS
127	Crystallization and microstructure of a glass seal for rapid laser sealing in the system CaO/Al2O3/SiO2. Journal of Materials Science, 2018, 53, 16207-16219.	1.7	3
128	Silver-enhanced nucleation and morphology control of surface crystallized Ba0.5Sr0.5Zn2Si2O7 from 8 BaO·8 SrO·34 ZnO·50 SiO2 glass. Ceramics International, 2019, 45, 18760-18766.	2.3	3
129	Thermomechanical properties of zero thermal expansion materials from theory and experiments. Physical Chemistry Chemical Physics, 2020, 22, 18518-18525.	1.3	3
130	Phase formation and microstructure during laser sintering and crystallization of a 4.2 MgO·5.0 ZnO·44.1 CaO·26.7 Al2O3·20.0 SiO2 glass. Journal of Materials Science, 2017, 52, 9344-9354.	1.7	2
131	Crystal growth velocities of a highly anisotropic phase obtained via surface and volume crystallization of barium–strontium–zinc silicate glasses. Journal of Materials Science, 2020, 55, 10364-10374.	1.7	2
132	Silver doped glasses from the system BaO/SrO/ZnO/SiO2 – The influence of Sb, Sn, and Ta on the formation of core-shell structures. Ceramics International, 2021, 47, 1126-1132.	2.3	2
133	Electrochemically induced nucleation of oxidic crystals in melts – a review. CrystEngComm, 2021, 23, 4419-4433.	1.3	2
134	Spectroscopic investigations and magnetic measurements on iron-containing barium titanate glass-ceramics. Journal of Non-Crystalline Solids, 2020, 546, 120273.	1.5	1
135	Tunable phase stability of negative thermal expansion materials by theory and experiment. Physical Chemistry Chemical Physics, 2021, 23, 25533-25541.	1.3	1
136	Comparative study of the crystallization behavior within the Na ₂ O–Y ₂ O ₃ –ZrO ₂ –SiO ₂ system during heating and cooling. CrystEngComm, 0, , .	1.3	1
137	Electron channelling contrast imaging (ECCI) applied to a fresnoite dendrite grown via electrochemically induced nucleation. Journal of Non-Crystalline Solids, 2021, 570, 121019.	1.5	0