Jun Maruyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1868086/publications.pdf

Version: 2024-02-01

74 papers

2,587 citations

236833 25 h-index 189801 50 g-index

75 all docs

75 docs citations

75 times ranked 3299 citing authors

#	Article	IF	CITATIONS
1	Helically Aligned Fused Carbon Hollow Nanospheres with Chiral Discrimination Ability. Nanoscale, 2022, , .	2.8	1
2	Graphitic Carbon Materials with Various Nanostructures Decorated with Fe-N-C Catalytically Active Sites for Air Electrodes. Electrocatalysis, 2022, 13, 219-229.	1.5	2
3	Bottom-up synthesis of 2D layered high-entropy transition metal hydroxides. Nanoscale Advances, 2022, 4, 2468-2478.	2.2	17
4	Facile Synthesis of Templated Activated Carbon from Cellulose Nanofibers and MgO Nanoparticles via Integrated Carbonization-activation Method as an Eco-friendly Supercapacitor. Electrochemistry, 2022, 90, 077004-077004.	0.6	1
5	Porosityâ€Induced Improvement in KOH Activation of Chitin Nanofiberâ€Based Porous Carbon Leading to Ultrahigh Specific Capacitance. ChemSusChem, 2022, 15, .	3.6	8
6	Fused sphere carbon monoliths with honeycomb-like porosity from cellulose nanofibers for oil and water separation. RSC Advances, 2021, 11, 2202-2212.	1.7	7
7	Force-responsive ordered carbonaceous frameworks synthesized from Ni-porphyrin. Chemical Communications, 2021, 57, 6007-6010.	2.2	10
8	Integrating polyacrylonitrile (PAN) nanoparticles with porous bacterial cellulose hydrogel to produce activated carbon electrodes for electric double-layer capacitors. Microporous and Mesoporous Materials, 2021, 323, 111209.	2.2	7
9	Helical Pore Alignment on Cylindrical Carbon. Small, 2020, 16, 1905916.	5.2	4
10	Bifunctional Oxygen Electrodes with Highly Step-Enriched Surface of Fe–N _{⟨i>x ⟨/sub> Containing Carbonaceous Thin Film. Journal of the Electrochemical Society, 2020, 167, 060504.}	1.3	8
11	Double Coating of Iron-Containing Carbonaceous Thin Film for Enhanced Bifunctional Catalysis for Use in Air Electrodes. Journal of the Electrochemical Society, 2020, 167, 160520.	1.3	1
12	Nanoscopic Combination of Edge and Flat Planes in the Active Site for Oxygen Reduction and Evolution. European Journal of Inorganic Chemistry, 2019, 2019, 4117-4121.	1.0	6
13	Indirect fuel cell based on a redox-flow battery with a new structure to avoid cross-contamination toward the non-use of noble metals. International Journal of Hydrogen Energy, 2019, 44, 27046-27055.	3.8	1
14	The Capacitor Properties of KOH Activated Porous Carbon Beads Derived from Polyacrylonitrile. Bulletin of the Chemical Society of Japan, 2019, 92, 832-839.	2.0	4
15	Concurrent nanoscale surface etching and SnO ₂ loading of carbon fibers for vanadium ion redox enhancement. Beilstein Journal of Nanotechnology, 2019, 10, 985-992.	1.5	5
16	Electric Double Layer Capacitors Based on Polyacrylonitrile-derived Porous Carbon Beads: Effects of Particle Size and Composite. Electrochemistry, 2019, 87, 119-122.	0.6	2
17	Ordered mesoporous structure by graphitized carbon nanowall assembly. Carbon, 2018, 126, 452-455.	5.4	18
18	Enhanced hydrogen chemisorption and spillover on non-metallic nickel subnanoclusters. Journal of Materials Chemistry A, 2018, 6, 12523-12531.	5.2	17

#	Article	IF	Citations
19	A carbonaceous two-dimensional lattice with FeN ₄ units. Chemical Communications, 2018, 54, 8995-8998.	2.2	8
20	Activated carbon monoliths derived from bacterial cellulose/polyacrylonitrile composite as new generation electrode materials in EDLC. Carbohydrate Polymers, 2018, 200, 381-390.	5.1	31
21	Central metal dependent modulation of induced-fit gas uptake in molecular porphyrin solids. Chemical Communications, 2018, 54, 7822-7825.	2.2	2
22	Efficient Edge Plane Exposure on Graphitic Carbon Fiber for Enhanced Flow-Battery Reactions. Journal of Physical Chemistry C, 2017, 121, 24425-24433.	1.5	20
23	Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor. Journal of Power Sources, 2017, 364, 374-382.	4.0	59
24	Activated Carbon Monolith Derived from <i>Amygdalus Pedunculata</i> Shell and Polyacrylonitrile for Supercapacitors. Bulletin of the Chemical Society of Japan, 2017, 90, 1333-1336.	2.0	9
25	Fabrication of N-doped and shape-controlled porous monolithic carbons from polyacrylonitrile for supercapacitors. RSC Advances, 2017, 7, 43172-43180.	1.7	17
26	Synthesis of ordered carbonaceous frameworks from organic crystals. Nature Communications, 2017, 8, 109.	5.8	60
27	Boron and nitrogen co-doped ordered microporous carbons with high surface areas. Chemical Communications, 2017, 53, 13348-13351.	2.2	21
28	Hierarchical Activated Green Carbons from Abundant Biomass Waste for Symmetric Supercapacitors. Bulletin of the Chemical Society of Japan, 2017, 90, 1058-1066.	2.0	15
29	Vanadium″on Redox Reactions in a Threeâ€Ðimensional Network of Reduced Graphite Oxide. ChemElectroChem, 2016, 3, 650-657.	1.7	16
30	Catalyst Layer Structures for Enhancement of Redox Reactions of $V(IV/V)$ Ions. Electrochimica Acta, 2016, 210, 854-861.	2.6	5
31	Carbonaceous thin film coating with Fe–N 4 site for enhancement of dioxovanadium ion reduction. Journal of Power Sources, 2016, 324, 521-527.	4.0	7
32	Double Layer Capacitance Properties of Monodisperse Carbon Particles with High Porosity Derived from Polyacrylonitrile Synthesized by Dispersion Polymerization. Electrochemistry, 2015, 83, 348-350.	0.6	6
33	Preparation of Activated Carbon by KOH Activation from <i>Amygdalus Pedunculata</i> Shell and its Application for Electric Double-layer Capacitor. Electrochemistry, 2015, 83, 351-353.	0.6	14
34	Catalysis of Vanadium Ion Redox Reactions on Carbonaceous Material with Metal–N ₄ Sites. ChemCatChem, 2015, 7, 2305-2308.	1.8	11
35	Carbonaceous Oxygen Reduction Catalyst Formed from Phthalonitrile Derivatives Using Cobalt Chloride as Template Source. Journal of the Electrochemical Society, 2015, 162, F442-F448.	1.3	2
36	Carbonaceous Hydrogenâ€Evolution Catalyst Containing Cobalt Surrounded by a Tuned Local Structure. ChemCatChem, 2014, 6, 2197-2200.	1.8	15

#	Article	lF	Citations
37	Heat Treatment of Carbonized Hemoglobin with Ammonia for Enhancement of Pore Development and Oxygen Reduction Activity. ACS Sustainable Chemistry and Engineering, 2014, 2, 493-499.	3.2	23
38	Silica-pillared graphene sheets with iron–nitrogen units as an oxygen reduction catalyst. Carbon, 2014, 66, 327-333.	5.4	14
39	Hydrogen Evolution by Carbonaceous Nanoparticle Aggregates that were derived from Cobalt Phthalocyanine. ChemCatChem, 2013, 5, 130-133.	1.8	12
40	Carbonaceous thin film coated on nanoparticle as fuel cell catalyst formed by one-pot hybrid physical–chemical vapor deposition of iron phthalocyanine. Electrochimica Acta, 2013, 90, 366-374.	2.6	10
41	Mechanism of Dioxovanadium Ion Reduction on Oxygen-Enriched Carbon Surface. Journal of the Electrochemical Society, 2013, 160, A1293-A1298.	1.3	24
42	Fabrication and Electrochemical Capacitive Behaviors of a Carbon Nanotube-Coated Polymer Monolith. Electrochemistry, 2013, 81, 789-791.	0.6	3
43	Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chemical Communications, 2012, 48, 10283.	2.2	252
44	Enhancement of oxygen reduction at Fe tetrapyridyl porphyrin by pyridyl-N coordination to transition metal ions. Electrochimica Acta, 2012, 63, 16-21.	2.6	20
45	Pore Development in Carbonized Hemoglobin by Concurrently Generated MgO Template for Activity Enhancement as Fuel Cell Cathode Catalyst. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4837-4843.	4.0	18
46	Fabrication of mesoporous polymer monolith: a template-free approach. Chemical Communications, 2011, 47, 7422.	2.2	124
47	Factors for Active Site Generation and Pore Development in Fuel Cell Catalysts Formed from Glucose/Nitrogen Source/Fe Salts. Electrochemistry, 2011, 79, 318-321.	0.6	1
48	One-pot hybrid physical–chemical vapor deposition for formation of carbonaceous thin film with catalytic activity for oxygen reduction. Electrochemistry Communications, 2011, 13, 1451-1454.	2.3	13
49	Direct synthesis of a carbonaceous fuel cell catalyst from solid containing small organic molecules and metal salts. Carbon, 2010, 48, 3271-3276.	5.4	10
50	Carbon Surface Oxidation by Short-Term Ozone Treatment for Modeling Long-Term Degradation of Fuel Cell Cathodes. Journal of the Electrochemical Society, 2009, 156, A181.	1.3	8
51	Use of purine and pyrimidine bases as nitrogen sources of active site in oxygen reduction catalyst. Journal of Power Sources, 2009, 194, 655-661.	4.0	29
52	Cross-Laboratory Experimental Study of Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1623-1639.	4.0	655
53	Application of nitrogen-rich amino acids to active site generation in oxygen reduction catalyst. Journal of Power Sources, 2008, 182, 489-495.	4.0	39
54	Hemoglobin Pyropolymer Used as a Precursor of a Noble-Metal-Free Fuel Cell Cathode Catalyst. Journal of Physical Chemistry C, 2008, 112, 2784-2790.	1.5	55

#	Article	IF	CITATIONS
55	Fuel Cell Cathode Catalyst with Heme-Like Structure Formed from Nitrogen of Glycine and Iron. Journal of the Electrochemical Society, 2007, 154, B297.	1.3	64
56	Performance of Polymer Electrolyte Fuel Cell Formed from Pt-loaded Activated Carbon with Various Pore Structures. Electrochemistry, 2007, 75, 119-121.	0.6	4
57	Structure control of a carbon-based noble-metal-free fuel cell cathode catalyst leading to high power output. Chemical Communications, 2007, , 2879.	2.2	40
58	Two-Step Carbonization as a Method of Enhancing Catalytic Properties of Hemoglobin at the Fuel Cell Cathode. Journal of Physical Chemistry C, 2007, 111, 6597-6600.	1.5	38
59	Carbonized Hemoglobin Functioning as a Cathode Catalyst for Polymer Electrolyte Fuel Cells. Chemistry of Materials, 2006, 18, 1303-1311.	3.2	58
60	Performance of PEFC Formed by Using Pt-Loaded Activated Carbon under High- and Low-Humidity Conditions. Journal of the Electrochemical Society, 2006, 153, A1181.	1.3	7
61	Enhancement effect of an adsorbed organic acid on oxygen reduction at various types of activated carbon loaded with platinum. Journal of Power Sources, 2005, 148, 1-8.	4.0	13
62	Formation of Platinum-Free Fuel Cell Cathode Catalyst with Highly Developed Nanospace by Carbonizing Catalase. Chemistry of Materials, 2005, 17, 4660-4667.	3.2	71
63	Effective Utilization of Nanospaces in Activated Carbon for Enhancing Catalytic Activity in Fuel Cell Electrodes. Journal of the Electrochemical Society, 2004, 151, A447.	1.3	11
64	Influence of activated carbon pore structure on oxygen reduction at catalyst layers supported on rotating disk electrodes. Carbon, 2004, 42, 3115-3121.	5 . 4	55
65	Cathodic oxygen reduction at the catalyst layer formed from Pt/carbon with adsorbed water. Journal of Electroanalytical Chemistry, 2003, 545, 109-115.	1.9	26
66	Application of conventional activated carbon loaded with dispersed Pt to PEFC catalyst layer. Electrochimica Acta, 2003, 48, 1443-1450.	2.6	44
67	Cathodic oxygen reduction at the interface between Nafion \hat{A}^{o} and electrochemically oxidized glassy carbon surfaces. Journal of Electroanalytical Chemistry, 2002, 527, 65-70.	1.9	30
68	Influence of anodic oxidation of glassy carbon surface on voltammetric behavior of Nafion $\hat{A}^{@}$ -coated glassy carbon electrodes. Electrochimica Acta, 2001, 46, 3381-3386.	2.6	66
69	Preparation of carbonaceous adsorbents for removal of chloroform from drinking water. Carbon, 2001, 39, 1069-1073.	5 . 4	84
70	Effects of the molecular structure of fluorinated additives on the kinetics of cathodic oxygen reduction. Journal of Electroanalytical Chemistry, 2001, 504, 208-216.	1.9	25
71	Effect of fluorinated alcohol on the kinetics of cathodic oxygen reduction at gold electrodes. Electrochimica Acta, 1999, 45, 415-422.	2.6	28
72	Influence of Nafion® film on the kinetics of anodic hydrogen oxidation. Journal of Electroanalytical Chemistry, 1998, 447, 201-209.	1.9	84

#	Article	IF	CITATIONS
73	Rotating ring-disk electrode study on the cathodic oxygen reduction at Nafion $\hat{A}^{@}$ -coated gold electrodes. Journal of Electroanalytical Chemistry, 1998, 458, 175-182.	1.9	66
74	Hydrogen oxidation on partially immersed Nafion $\hat{A}^{@}$ -coated electrodes. Journal of Electroanalytical Chemistry, 1996, 417, 105-111.	1.9	26