List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1868065/publications.pdf Version: 2024-02-01

Περγλ ΠΝΠΤΜΑΖ

#	Article	IF	CITATIONS
1	Antibody Responses to SARS-CoV-2 After Infection or Vaccination in Children and Young Adults With Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2022, 28, 1019-1026.	0.9	33
2	CCR5: The Receptor That Unlocks the Door for HIV Entry into Cells. Journal of Immunology, 2022, 208, 2459-2460.	0.4	0
3	SARS-CoV-2 specific antibody and neutralization assays reveal the wide range of the humoral immune response to virus. Communications Biology, 2021, 4, 129.	2.0	95
4	Disease Progression in Children With Perinatal Human Immunodeficiency Virus Correlates With Increased PD-1+ CD8 T Cells That Coexpress Multiple Immune Checkpoints. Journal of Infectious Diseases, 2021, , .	1.9	2
5	STIM1â€mediated calcium influx controls antifungal immunity and the metabolic function of nonâ€pathogenic Th17 cells. EMBO Molecular Medicine, 2020, 12, e11592.	3.3	26
6	A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells. Nature, 2020, 583, 447-452.	13.7	40
7	LDB1 Enforces Stability on Direct and Indirect Oncoprotein Partners in Leukemia. Molecular and Cellular Biology, 2020, 40, .	1.1	11
8	Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence. Journal of Biological Chemistry, 2020, 295, 5944-5959.	1.6	25
9	Decoy exosomes provide protection against bacterial toxins. Nature, 2020, 579, 260-264.	13.7	149
10	RBIO-01. PROSPECTIVE OBSERVATIONAL STUDY TO DETERMINE THE IMMUNE SYSTEM RESPONSE TO GAMMA KNIFE RADIOSURGERY FOR VESTIBULAR SCHWANNOMAS. Neuro-Oncology, 2020, 22, ii192-ii192.	0.6	0
11	Immune cells for microbiota surveillance. Science, 2019, 366, 419-420.	6.0	13
12	Serial immunological parameters in a phase II trial of exemestane and low-dose oral cyclophosphamide in advanced hormone receptor-positive breast cancer. Breast Cancer Research and Treatment, 2018, 168, 57-67.	1.1	15
13	T-Cell-Intrinsic Receptor Interacting Protein 2 Regulates Pathogenic T Helper 17 Cell Differentiation. Immunity, 2018, 49, 873-885.e7.	6.6	19
14	Functional Interrogation of Primary Human T Cells via CRISPR Genetic Editing. Journal of Immunology, 2018, 201, 1586-1598.	0.4	27
15	Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation. Mucosal Immunology, 2018, 11, 1591-1605.	2.7	91
16	HIV-Infected Children Have Elevated Levels of PD-1+ Memory CD4 T Cells With Low Proliferative Capacity and High Inflammatory Cytokine Effector Functions. Journal of Infectious Diseases, 2017, 216, 641-650.	1.9	31
17	The role of platelet and endothelial GARP in thrombosis and hemostasis. PLoS ONE, 2017, 12, e0173329.	1.1	27
18	Time of Initiating Enzyme Replacement Therapy Affects Immune Abnormalities and Disease Severity in Patients with Gaucher Disease. PLoS ONE, 2016, 11, e0168135.	1.1	25

#	Article	IF	CITATIONS
19	FOXP3+Helios+ Regulatory T Cells, Immune Activation, and Advancing Disease in HIV-Infected Children. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 72, 474-484.	0.9	27
20	Store-Operated Ca 2+ Entry in Follicular T Cells Controls Humoral Immune Responses and Autoimmunity. Immunity, 2016, 44, 1350-1364.	6.6	97
21	Selective ORAI1 Inhibition Ameliorates Autoimmune Central Nervous System Inflammation by Suppressing Effector but Not Regulatory T Cell Function. Journal of Immunology, 2016, 196, 573-585.	0.4	45
22	HIV-Infected Children Have Lower Frequencies of CD8+ Mucosal-Associated Invariant T (MAIT) Cells that Correlate with Innate, Th17 and Th22 Cell Subsets. PLoS ONE, 2016, 11, e0161786.	1.1	29
23	Elimination of HIV-1-Infected Primary T Cell Reservoirs in an In Vitro Model of Latency. PLoS ONE, 2015, 10, e0126917.	1.1	5
24	Inhibition of HIV infection by caerin 1 antimicrobial peptides. Peptides, 2015, 71, 296-303.	1.2	26
25	Ca2+ Signaling but Not Store-Operated Ca2+ Entry Is Required for the Function of Macrophages and Dendritic Cells. Journal of Immunology, 2015, 195, 1202-1217.	0.4	105
26	Clinical Trial Evidence of the Antitumor Activity of Topical Imiquimod for Breast Cancer Skin Metastases. Journal of Clinical Oncology, 2014, 32, 3204-3205.	0.8	8
27	Differentiation of IL-17–Producing Effector and Regulatory Human T Cells from Lineage-Committed Naive Precursors. Journal of Immunology, 2014, 193, 1047-1054.	0.4	49
28	Circulating Memory T Cells Isolated from Hodgkin Lymphoma Patients Display Evidence of Exhaustion and Chronic Activation. Blood, 2014, 124, 4400-4400.	0.6	0
29	Comprehensive Hybrid Capture-Based Genomic Profiling of T-Cell Leukemias and Lymphomas Reveals Targetable JAK1 and JAK3 Co-Existing Mutations. Blood, 2014, 124, 1672-1672.	0.6	0
30	CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature, 2013, 493, 51-55.	13.7	248
31	Staphylococcus aureus Leukotoxin ED Targets the Chemokine Receptors CXCR1 and CXCR2 to Kill Leukocytes and Promote Infection. Cell Host and Microbe, 2013, 14, 453-459.	5.1	157
32	GARP–TGF-β Complexes Negatively Regulate Regulatory T Cell Development and Maintenance of Peripheral CD4+ T Cells In Vivo. Journal of Immunology, 2013, 190, 5057-5064.	0.4	22
33	Regulation of the Expression of GARP/Latent TGF-β1 Complexes on Mouse T Cells and Their Role in Regulatory T Cell and Th17 Differentiation. Journal of Immunology, 2013, 190, 5506-5515.	0.4	83
34	Probing the Effector and Suppressive Functions of Human T Cell Subsets Using Antigen-Specific Engineered T Cell Receptors. PLoS ONE, 2013, 8, e56302.	1.1	10
35	The Metalloprotease ADAM12 Regulates the Effector Function of Human Th17 Cells. PLoS ONE, 2013, 8, e81146.	1.1	11
36	Human Immunodeficiency Virus Type 1 Capsid Mutation N74D Alters Cyclophilin A Dependence and Impairs Macrophage Infection. Journal of Virology, 2012, 86, 4708-4714.	1.5	84

#	Article	IF	CITATIONS
37	Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Molecular Microbiology, 2011, 79, 814-825.	1.2	158
38	Revisiting Immune Exhaustion During HIV Infection. Current HIV/AIDS Reports, 2011, 8, 4-11.	1.1	194
39	Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells. Journal of Experimental Medicine, 2011, 208, 1875-1887.	4.2	88
40	RNA helicase Mov10 is a potent inhibitor of HIV or retrovirus infectivity and retrotransposition of endogenous mammalian retroviruses. FASEB Journal, 2011, 25, 886.2.	0.2	0
41	A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature, 2010, 467, 214-217.	13.7	397
42	Expression and Function of TNF and IL-1 Receptors on Human Regulatory T Cells. PLoS ONE, 2010, 5, e8639.	1.1	60
43	Susceptibility of Human Th17 Cells to Human Immunodeficiency Virus and Their Perturbation during Infection. Journal of Infectious Diseases, 2010, 201, 843-854.	1.9	157
44	Perturbation of the P-Body Component Mov10 Inhibits HIV-1 Infectivity. PLoS ONE, 2010, 5, e9081.	1.1	105
45	Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proceedings of the United States of America, 2009, 106, 13439-13444.	3.3	227
46	GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3 ⁺ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13445-13450.	3.3	405
47	RORC2: The master of human Th17 cell programming. European Journal of Immunology, 2009, 39, 1452-1455.	1.6	76
48	The Biology of FoxP3: A Key Player in Immune Suppression during Infections, Autoimmune Diseases and Cancer. Advances in Experimental Medicine and Biology, 2009, 665, 47-59.	0.8	46
49	The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunology, 2008, 9, 641-649.	7.0	1,426
50	Naive Precursors of Human Regulatory T Cells Require FoxP3 for Suppression and Are Susceptible to HIV Infection. Journal of Immunology, 2008, 180, 764-773.	0.4	66
51	Suppression of HIV-Specific and Allogeneic T Cell Activation by Human Regulatory T Cells Is Dependent on the Strength of Signals. PLoS ONE, 2008, 3, e2952.	1.1	17
52	Identification of a Regulatory T Cell Specific Cell Surface Molecule that Mediates Suppressive Signals and Induces Foxp3 Expression. PLoS ONE, 2008, 3, e2705.	1.1	132
53	Identification of a CCR5-Expressing T Cell Subset That Is Resistant to R5-Tropic HIV Infection. PLoS Pathogens, 2007, 3, e58.	2.1	49
54	HIV Infection of Naturally Occurring and Genetically Reprogrammed Human Regulatory T-cells. PLoS Biology, 2004, 2, e198.	2.6	271

#	Article	IF	CITATIONS
55	HIV infection of primary human T cells is determined by tunable thresholds of T cell activation. European Journal of Immunology, 2004, 34, 1705-1714.	1.6	63
56	Genetic Reprogramming of Primary Human T Cells Reveals Functional Plasticity in Th Cell Differentiation. Journal of Immunology, 2003, 171, 3542-3549.	0.4	107
57	The Primate Lentiviral Receptor Bonzo/STRL33 Is Coordinately Regulated with CCR5 and Its Expression Pattern Is Conserved Between Human and Mouse. Journal of Immunology, 2000, 165, 3284-3292.	0.4	213
58	Cytokine Signals Are Sufficient for HIV-1 Infection of Resting Human T Lymphocytes. Journal of Experimental Medicine, 1999, 189, 1735-1746.	4.2	397
59	Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature, 1997, 388, 296-300.	13.7	725
60	Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996, 381, 661-666.	13.7	3,667