Roland Benoit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1868039/publications.pdf

Version: 2024-02-01

840776 713466 26 448 11 21 citations h-index g-index papers 30 30 30 677 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental and kinetic modeling study of n-pentane oxidation at 10 atm, Detection of complex low-temperature products by Q-Exactive Orbitrap. Combustion and Flame, 2022, 235, 111723.	5.2	9
2	Gasoline Surrogate Oxidation in a Motored Engine, a JSR, and an RCM: Characterization of Cool-Flame Products by High-Resolution Mass Spectrometry. Energy & Energy & 2022, 36, 3893-3908.	5.1	5
3	Oxidation of di-n-propyl ether: Characterization of low-temperature products. Proceedings of the Combustion Institute, 2021, 38, 337-344.	3.9	22
4	Experimental characterization of n-heptane low-temperature oxidation products including keto-hydroperoxides and highly oxygenated organic molecules (HOMs). Combustion and Flame, 2021, 224, 83-93.	5. 2	22
5	On the similarities and differences between the products of oxidation of hydrocarbons under simulated atmospheric conditions and cool flames. Atmospheric Chemistry and Physics, 2021, 21, 7845-7862.	4.9	10
6	Low-temperature oxidation of a gasoline surrogate: Experimental investigation in JSR and RCM using high-resolution mass spectrometry. Combustion and Flame, 2021, 228, 128-141.	5.2	7
7	Oxidation of diethyl ether: Extensive characterization of products formed at low temperature using high resolution mass spectrometry. Combustion and Flame, 2021, 228, 340-350.	5.2	12
8	Experimental and kinetic modeling study of n-hexane oxidation. Detection of complex low-temperature products using high-resolution mass spectrometry. Combustion and Flame, 2021, 233, 111581.	5.2	12
9	Experimental Characterization of Tetrahydrofuran Low-Temperature Oxidation Products Including Ketohydroperoxides and Highly Oxygenated Molecules. Energy & Energy & 2021, 35, 7242-7252.	5.1	13
10	Towards a Comprehensive Characterization of the Low-Temperature Autoxidation of Di-n-Butyl Ether. Molecules, 2021, 26, 7174.	3.8	6
11	Oxidation of di-n-butyl ether: Experimental characterization of low-temperature products in JSR and RCM. Combustion and Flame, 2020, 222, 133-144.	5.2	25
12	Phosphonateâ€Mediated Immobilization of Rhodium/Bipyridine Hydrogenation Catalysts. Chemistry - A European Journal, 2018, 24, 2457-2465.	3.3	7
13	Phenylamide-oxime and phenylamide nanolayer covalently grafted carbon via electroreduction of the corresponding diazonium salts for detection of nickel ions. Journal of Electroanalytical Chemistry, 2018, 817, 101-110.	3.8	4
14	Impact of rapid thermal annealing on Mg-implanted GaN with a SiO _{<i>x</i>} /AlN cap-layer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600438.	1.8	5
15	Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins. Langmuir, 2016, 32, 5480-5490.	3.5	2
16	Bottom-up solution chemistry approaches for nanostructured thermoelectric materials. Journal of Materials Chemistry A, 2013, 1, 14221.	10.3	11
17	Magnetic Nanocarriers of Doxorubicin Coated with Poly(ethylene glycol) and Folic Acid: Relation between Coating Structure, Surface Properties, Colloidal Stability, and Cancer Cell Targeting. Langmuir, 2012, 28, 1496-1505.	3.5	111
18	Plasma spraying of lanthanum silicate electrolytes for intermediate temperature solid oxide fuel cells (ITSOFCs). Surface and Coatings Technology, 2010, 205, 1060-1064.	4.8	16

#	Article	IF	CITATIONS
19	Synthesis and Evaluation of Novel Biocompatible Super-paramagnetic Iron Oxide Nanoparticles as Magnetic Anticancer Drug Carrier and Fluorescence Active Label. Journal of Physical Chemistry C, 2010, 114, 5850-5858.	3.1	53
20	Optimisation of the surface properties of SBA-15 mesoporous silica for in-situ nanoparticle synthesis. Microporous and Mesoporous Materials, 2009, 120, 2-6.	4.4	6
21	Reactions of Radicals with Hydrolyzed Bi(III) Ions:  A Pulse Radiolysis Study. Journal of Physical Chemistry A, 2007, 111, 10640-10645.	2.5	3
22	New carbon multiwall nanotubes – TiO2 nanocomposites obtained by the sol–gel method. Journal of Non-Crystalline Solids, 2004, 345-346, 596-600.	3.1	41
23	Structural, Bonding, and Electrochemical Properties of Perfluorinated Fullerene C70. Journal of Physical Chemistry B, 2001, 105, 1739-1742.	2.6	20
24	Clay/Carbon Nanocomposites as Precursors of Electrode Materials for Lithium-Ion Batteries and Supercapacitors. Molecular Crystals and Liquid Crystals, 2000, 340, 449-454.	0.3	22
25	Evidence for the Reduction of Sulfates Under Representative SG Secondary Side Conditions, and for the Role of Reduced Sulfates on Alloy 600 Tubing Degradation., 0,, 567-575.		2
26	Low-Temperature Oxidation of Di- $\langle i \rangle$ n $\langle i \rangle$ -Butyl Ether in a Motored Homogeneous Charge Compression Ignition (HCCI) Engine: Comparison of Characteristic Products with RCM and JSR Speciation by Orbitrap. Energy & Drugs, Fuels, 0, , .	5.1	1