Ekaterina Anatolievna Skiba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1867442/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A technology for pilot production of bacterial cellulose from oat hulls. Chemical Engineering Journal, 2020, 383, 123128.	12.7	57
2	Processing Pine Wood into Vanillin and Glucose by Sequential Catalytic Oxidation and Enzymatic Hydrolysis. Journal of Wood Chemistry and Technology, 2017, 37, 43-51.	1.7	42
3	Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochemical Engineering Journal, 2017, 126, 118-125.	3.6	42
4	Pilot technology of ethanol production from oat hulls for subsequent conversion to ethylene. Chemical Engineering Journal, 2017, 329, 178-186.	12.7	32
5	Study of the Conditions for the Biosynthesis of Bacterial Cellulose by the Producer Medusomyces gisevii Sa-12. Applied Biochemistry and Microbiology, 2018, 54, 179-187.	0.9	31
6	Bacterial Nanocellulose Nitrates. Nanomaterials, 2019, 9, 1694.	4.1	25
7	Early morphological changes in tissues when replacing abdominal wall defects by bacterial nanocellulose in experimental trials. Journal of Materials Science: Materials in Medicine, 2018, 29, 95.	3.6	17
8	X-ray Diffraction Study of Bacterial Nanocellulose Produced by the Medusomyces gisevii Sa-12 Culture in Enzymatic Hydrolysates of Oat Hulls. Crystallography Reports, 2018, 63, 955-960.	0.6	15
9	A study of properties and enzymatic hydrolysis of bacterial cellulose. Cellulose, 2019, 26, 2255-2265.	4.9	14
10	Enzymatic hydrolysis of lignocellulosic materials in aqueous media and the subsequent microbiological synthesis of bioethanol. Catalysis in Industry, 2016, 8, 168-175.	0.7	13
11	Enzymatic hydrolysis of cellulose from oat husks at different substrate concentrations. Russian Journal of Bioorganic Chemistry, 2014, 40, 726-732.	1.0	12
12	Technological fundamentals of bacterial nanocellulose production from zero prime-cost feedstock. Doklady Biochemistry and Biophysics, 2017, 477, 357-359.	0.9	12
13	Enzymatic hydrolysis of the products of hydro-thermobaric processing of Miscanthus and oat hulls. Catalysis in Industry, 2013, 5, 335-341.	0.7	9
14	Kinetics of the enzymatic hydrolysis of lignocellulosic materials at different concentrations of the substrate. Catalysis in Industry, 2016, 8, 81-87.	0.7	6
15	Enhancing the Yield of Bioethanol from the Lignocellulose of Oat Hulls by Optimizing the Composition of the Nutrient Medium. Catalysis in Industry, 2018, 10, 257-262.	0.7	6
16	X-ray Diffraction Study of Bacterial Nanocellulose Produced by Medusomyces Gisevii Sa-12 Cultured in Enzymatic Hydrolysates of Miscanthus. Crystallography Reports, 2019, 64, 914-919.	0.6	6
17	Preparing bioethanol from oat hulls pretreated with a dilute nitric acid: Scaling of the production process on a pilot plant. Catalysis in Industry, 2017, 9, 257-263.	0.7	5
18	Composition of Inorganic Components of Oat Husks and Products of Their Chemical and Enzymatic Transformation. Russian Journal of Applied Chemistry, 2018, 91, 230-234.	0.5	5

#	Article	IF	CITATIONS
19	Sterilization of Milk by Ultrasonics. Siberian Russian Workshop and Tutorial on Electron Devices and Materials, 2007, , .	0.0	4
20	Enzymatic hydrolysis of celluloses obtained via the hydrothermal processing of Miscanthus and oat hulls. Catalysis in Industry, 2014, 6, 67-71.	0.7	4
21	Biotechnological aspects of ethanol biosynthesis from Miscanthus. Russian Journal of Genetics: Applied Research, 2015, 5, 69-74.	0.4	4
22	Optimization of pre-saccharification time during dSSF process in oat-hull bioethanol technology. 3 Biotech, 2019, 9, 455.	2.2	4
23	Study of the influence of Medusomyces gisevii Sa-12 inoculum dosage on bacterial cellulose yield and degree of polymerisation. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2019, 3, 420-429.	0.3	4
24	Producing Bioethanol from Miscanthus: Experience of Primary Scale-Up. Catalysis in Industry, 2020, 12, 155-161.	0.7	3
25	Investigation of bacterial nanocellulose biosynthesis by Medusomyces gisevii Sa-12 from enzymatic hydrolyzate obtained by alkaline delignification of miscanthus. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2019, 9, 260-269.	0.3	3
26	Preparing Nutrient Media from Lignocellulose: Optimizing the Composition of a Multienzyme Compound. Catalysis in Industry, 2020, 12, 162-168.	0.7	2
27	BIOSYNTHESIS OF BACTERIAL CELLULOSE ON ENZYMATIC HYDROLYZATE OF OAT HULL PULP. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2017, 7, 141-147.	0.3	1
28	Chemical Aspects of Bacterial Nanocellulose. Journal of Siberian Federal University: Chemistry, 2018, 11, 531-542.	0.7	1
29	BIOSYNTHESIS OF BACTERIAL NANOCELLULOSE IN MEDIA OBTAINED FROM CELLULOSE CONTAINING MATERIALS. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2018, 8, 41-47.	0.3	0