
Mikko Mönkkönen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1867433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SOCIAL INFORMATION USE IS A PROCESS ACROSS TIME, SPACE, AND ECOLOGY, REACHING HETEROSPECIFICS. Ecology, 2007, 88, 1622-1633.	1.5	369
2	Challenges of ecological restoration: Lessons from forests in northern Europe. Biological Conservation, 2013, 167, 248-256.	1.9	181
3	Long-Term Effects of Forestry on Birds of the Eastern Canadian Boreal Forests: a Comparison with Fennoscandia. Conservation Biology, 2001, 15, 1151-1162.	2.4	148
4	On Critical Thresholds in Landscape Connectivity: A Management Perspective. Oikos, 1999, 84, 302.	1.2	143
5	Spatially dynamic forest management to sustain biodiversity and economic returns. Journal of Environmental Management, 2014, 134, 80-89.	3.8	140
6	Do migrant birds have more pointed wings?: A comparative study. Evolutionary Ecology, 1995, 9, 520-528.	0.5	139
7	Are Fragments Islands? Landscape Context and Densityâ€Area Relationships in Boreal Forest Birds. American Naturalist, 2003, 162, 343-357.	1.0	133
8	Positive fitness consequences of interspecific interaction with a potential competitor. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1619-1623.	1.2	131
9	Numerical and behavioural responses of migrant passerines to experimental manipulation of resident tits (Parus spp.): heterospecific attraction in northern breeding bird communites?. Oecologia, 1990, 85, 218-225.	0.9	119
10	New behavioural trait adopted or rejected by observing heterospecific tutor fitness. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1736-1741.	1.2	117
11	Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. Forest Policy and Economics, 2018, 92, 119-127.	1.5	117
12	Woodland key habitats in northern Europe: concepts, inventory and protection. Scandinavian Journal of Forest Research, 2010, 25, 309-324.	0.5	113
13	Optimizing management to enhance multifunctionality in a boreal forest landscape. Journal of Applied Ecology, 2017, 54, 61-70.	1.9	113
14	Heterospecific attraction among forest birds: a review. Ornithological Science, 2002, 1, 41-51.	0.3	110
15	Demographic Responses by Birds to Forest Fragmentation. Conservation Biology, 2005, 19, 1537-1546.	2.4	109
16	Fear factor: prey habitat selection and its consequences in a predation risk landscape. Ecography, 2006, 29, 507-514.	2.1	105
17	Continuous cover forestry is a cost-efficient tool to increase multifunctionality of boreal production forests in Fennoscandia. Biological Conservation, 2018, 217, 104-112.	1.9	104
18	Positive interactions between migrant and resident birds: testing the heterospecific attraction hypothesis. Oecologia, 2003, 134, 431-438.	0.9	102

#	Article	IF	CITATIONS
19	Graph-theoretic connectivity measures: what do they tell us about connectivity?. Landscape Ecology, 2011, 26, 951-967.	1.9	102
20	Evolution of heterospecific attraction: using other species as cues in habitat selection. Evolutionary Ecology, 1999, 13, 93-106.	0.5	100
21	Co-variation and indicators of species diversity: Can richness of forest-dwelling species be predicted in northern boreal forests?. Ecological Indicators, 2006, 6, 686-700.	2.6	88
22	Managing a boreal forest landscape for providing timber, storing and sequestering carbon. Ecosystem Services, 2015, 14, 179-189.	2.3	81
23	Random processes and geographic species richness patterns: why so few species in the north?. Ecography, 2001, 24, 43-49.	2.1	79
24	Are forest birds categorised as "edge species―strictly associated with edges?. Ecography, 2003, 26, 514-520.	2.1	78
25	Heterospecific attraction and food resources in migrants' breeding patch selection in northern boreal forest. Oecologia, 1998, 115, 278-286.	0.9	74
26	HABITAT LOSS AND FRAGMENTATION IN DYNAMIC LANDSCAPES: AVIAN PERSPECTIVES FROM THE BOREAL FOREST*. , 2002, 12, 375-389.		73
27	Mixed-Species Foraging Aggregations and Heterospecific Attraction in Boreal Bird Communities. Oikos, 1996, 77, 127.	1.2	71
28	Heterospecific attraction affects community structure and migrant abundances in northern breeding bird communities. Canadian Journal of Zoology, 1997, 75, 2077-2083.	0.4	70
29	Impacts of forestry on boreal forests: An ecosystem services perspective. Ambio, 2017, 46, 743-755.	2.8	70
30	Diversity Patterns in Palaearctic and Nearctic Forest Bird Assemblages. Journal of Biogeography, 1994, 21, 183.	1.4	67
31	Responses by breeding birds to heterospecific song and mobbing call playbacks under varying predation risk. Animal Behaviour, 2001, 62, 1067-1073.	0.8	67
32	The role of climate in limiting European resident bird populations. Journal of Biogeography, 2003, 30, 55-70.	1.4	64
33	Disentangling the effects of area, energy and habitat heterogeneity on boreal forest bird species richness in protected areas. Global Ecology and Biogeography, 2010, 19, 61-71.	2.7	60
34	Indirect cues of nest predation risk and avian reproductive decisions. Biology Letters, 2009, 5, 176-178.	1.0	59
35	Ecological Sustainability of Birds in Boreal Forests. Ecology and Society, 1998, 2, .	0.9	58
36	Participation and compensation claims in voluntary forest conservation: A case of privately owned forests in Finland. Forest Policy and Economics, 2009, 11, 498-507.	1.5	57

#	Article	IF	CITATIONS
37	The past and the present in decisionâ€making: the use of conspecific and heterospecific cues in nest site selection. Ecology, 2014, 95, 3428-3439.	1.5	57
38	Predator proximity as a stressor in breeding flycatchers: mass loss, stress protein induction, and elevated provisioning. Ecology, 2010, 91, 1832-1840.	1.5	55
39	Genital variation within and between three closely related Euxoa moth species: testing the lock-and-key hypothesis. Journal of Zoology, 2006, 268, 109-119.	0.8	54
40	Predation as a landscape effect: the trading off by prey species between predation risks and protection benefits. Journal of Animal Ecology, 2007, 76, 619-629.	1.3	54
41	PREDICTING OCCUPANCY FOR THE SIBERIAN FLYING SQUIRREL IN OLD-GROWTH FOREST PATCHES. , 2002, 12, 1188-1198.		53
42	Testing alternative indicators for biodiversity conservation in old-growth boreal forests: ecology and economics. Ecological Economics, 2004, 50, 35-48.	2.9	53
43	Diversity of polyporous fungi (Polyporaceae) in northern boreal forests: effects of forest site type and logging intensity. Scandinavian Journal of Forest Research, 2004, 19, 152-163.	0.5	53
44	Size matters in studies of dead wood and wood-inhabiting fungi. Fungal Ecology, 2011, 4, 342-349.	0.7	53
45	Conflicting objectives in production forests pose a challenge for forest management. Ecosystem Services, 2017, 28, 298-310.	2.3	52
46	The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. Forest Ecology and Management, 2014, 313, 283-291.	1.4	51
47	Managing Boreal Forest Landscapes for Flying Squirrels. Conservation Biology, 2000, 14, 218-226.	2.4	50
48	Energy availability, abundance, energy-use and species richness in forest bird communities: a test of the species-energy theory. Global Ecology and Biogeography, 2006, 15, 290-302.	2.7	50
49	Voluntary agreements in protecting privately owned forests in Finland — To buy or to lease?. Forest Policy and Economics, 2008, 10, 230-239.	1.5	50
50	Woodland key habitats evaluated as part of a functional reserve network. Biological Conservation, 2010, 143, 1212-1227.	1.9	50
51	Quantifying the Indicator Power of an Indicator Species. Conservation Biology, 2009, 23, 1008-1016.	2.4	49
52	Variation in clutch size in relation to nest size in birds. Ecology and Evolution, 2014, 4, 3583-3595.	0.8	49
53	Changes in diet and morphology of Finnish goshawks from 1960s to 1990s. Oecologia, 1999, 121, 369-376.	0.9	48
54	Interspecific variation in the relationship between clutch size, laying date and intensity of urbanization in four species of holeâ€nesting birds. Ecology and Evolution, 2016, 6, 5907-5920	0.8	47

Μικκο Μönkkönen

#	Article	IF	CITATIONS
55	Aggregate Dispersion of Birds after Encountering a Predator: Experimental Evidence. Journal of Avian Biology, 1998, 29, 44.	0.6	46
56	Landscape characteristics associated with the occurrence of the flying squirrel Pteromys volans in old-growth forests of northern Finland. Ecography, 1997, 20, 634-642.	2.1	45
57	High boreal forest multifunctionality requires continuous cover forestry as a dominant management. Land Use Policy, 2021, 100, 104918.	2.5	45
58	Title is missing!. Landscape Ecology, 2003, 18, 377-393.	1.9	43
59	Hotspots in cold climate: Conservation value of woodland key habitats in boreal forests. Biological Conservation, 2011, 144, 2061-2067.	1.9	43
60	Mammalian nest predator feces as a cue in avian habitat selection decisions. Behavioral Ecology, 2013, 24, 262-266.	1.0	41
61	The effects of small-scale disturbance on forest birds: a meta-analysis. Canadian Journal of Forest Research, 2010, 40, 1833-1842.	0.8	39
62	Cost-effective strategies to conserve boreal forest biodiversity and long-term landscape-level maintenance of habitats. European Journal of Forest Research, 2011, 130, 717-727.	1.1	39
63	Managing Nordic boreal forest landscapes for biodiversity: ecological and economic perspectives. Biodiversity and Conservation, 1999, 8, 85-99.	1.2	38
64	Habitat Loss and Fragmentation in Dynamic Landscapes: Avian Perspectives From the Boreal Forest. , 2002, 12, 375.		38
65	Taxonomic diversity of the terrestrial bird and mammal fauna in temperate and boreal biomes of the northern hemisphere. Journal of Biogeography, 1997, 24, 603-612.	1.4	36
66	Clutchâ€size variation in Western Palaearctic secondary holeâ€nesting passerine birds in relation to nest box design. Methods in Ecology and Evolution, 2014, 5, 353-362.	2.2	36
67	Cost-Efficiency of Decaying Wood as a Surrogate for Overall Species Richness in Boreal Forests. Conservation Biology, 2006, 20, 74-84.	2.4	35
68	To thin or not to thin: bio-economic analysis of two alternative practices to increase amount of coarse woody debris in managed forests. European Journal of Forest Research, 2012, 131, 1411-1422.	1.1	35
69	What are the effects of even-aged and uneven-aged forest management on boreal forest biodiversity in Fennoscandia and European Russia? A systematic review. Environmental Evidence, 2021, 10, .	1.1	35
70	Occurrence of Moths in Boreal Forest Corridors. Conservation Biology, 2003, 17, 468-475.	2.4	34
71	Ecological Efficiency of Voluntary Conservation of Borealâ€Forest Biodiversity. Conservation Biology, 2009, 23, 339-347.	2.4	33
72	Flawed Metaâ€Analysis of Biodiversity Effects of Forest Management. Conservation Biology, 2010, 24, 1154-1156.	2.4	33

#	Article	IF	CITATIONS
73	Role of the Siberian flying squirrel as an umbrella species for biodiversity in northern boreal forests. Ecological Indicators, 2008, 8, 246-255.	2.6	32
74	More is more? Forest management allocation at different spatial scales to mitigate conflicts between ecosystem services. Landscape Ecology, 2017, 32, 2337-2349.	1.9	32
75	Sectoral policies cause incoherence in forest management and ecosystem service provisioning. Forest Policy and Economics, 2022, 136, 102689.	1.5	32
76	Epiphytic bryophytes on European aspen <i>Populus tremula</i> in old-growth forests in northeastern Finland and in adjacent sites in Russia. Canadian Journal of Botany, 2000, 78, 529-536.	1.2	30
77	Perennial polypores as indicators of annual and red-listed polypores. Ecological Indicators, 2009, 9, 256-266.	2.6	29
78	Deconstructing responses of dragonfly species richness to area, nutrients, water plant diversity and forestry. Oecologia, 2011, 166, 457-467.	0.9	29
79	Forest multifunctionality is not resilient to intensive forestry. European Journal of Forest Research, 2021, 140, 537-549.	1.1	29
80	EFFECTS OF PREDATION ON COMMUNITY ASSEMBLY AND SPATIAL DISPERSION OF BREEDING FOREST BIRDS. Ecology, 2001, 82, 232-244.	1.5	28
81	Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest. Global Change Biology, 2015, 21, 637-651.	4.2	27
82	Mapping a â€~cryptic kingdom': Performance of lidar derived environmental variables in modelling the occurrence of forest fungi. Remote Sensing of Environment, 2016, 186, 428-438.	4.6	27
83	Beetle species richness along the forest productivity gradient in northern Finland. Ecography, 2002, 25, 42-52.	2.1	26
84	Polypore diversity in the herb-rich woodland key habitats of Koli National Park in eastern Finland. Biological Conservation, 2005, 126, 260-269.	1.9	26
85	Maintenance of flying squirrel habitat and timber harvest: a site-specific spatial model in forest planning calculations. Landscape Ecology, 2007, 22, 243-256.	1.9	26
86	Modeling the effects of climate change and management on the dead wood dynamics in boreal forest plantations. European Journal of Forest Research, 2014, 133, 405-421.	1.1	26
87	Degradation in landscape matrix has diverse impacts on diversity in protected areas. PLoS ONE, 2017, 12, e0184792.	1.1	26
88	Woodland key habitats in preserving polypore diversity in boreal forests: Effects of patch size, stand structure and microclimate. Forest Ecology and Management, 2016, 373, 138-148.	1.4	24
89	Environmental Characteristics and Anthropogenic Impact Jointly Modify Aquatic Macrophyte Species Diversity. Frontiers in Plant Science, 2018, 9, 1001.	1.7	24
90	Managing boreal forests for the simultaneous production of collectable goods and timber revenues. Silva Fennica, 2016, 50, .	0.5	24

#	Article	IF	CITATIONS
91	Temperatureâ€dependent mutational robustness can explain faster molecular evolution at warm temperatures, affecting speciation rate and global patterns of species diversity. Ecography, 2016, 39, 1025-1033.	2.1	23
92	Genetic diversity in the Siberian jay <i>Perisoreus infaustus</i> in fragmented oldâ€growth forests of Fennoscandia. Ecography, 2000, 23, 669-677.	2.1	22
93	Qualitative geographical variation in interspecific interactions. Ecography, 2004, 27, 112-118.	2.1	22
94	Clutch Size and Cavity Excavation in Parids (Paridae): The Limited Breeding Opportunities Hypothesis Tested. American Naturalist, 1997, 149, 1164-1174.	1.0	21
95	Predation risk effects on fitness related measures in a resident bird. Oikos, 2006, 113, 325-333.	1.2	21
96	Removal of Territory Holders Causes Influx of Small-Sized Intruders in Passerine Bird Communities in Northern Finland. Oikos, 1990, 57, 281.	1.2	20
97	Linking species interactions with phylogenetic and functional distance in European bird assemblages at broad spatial scales. Clobal Ecology and Biogeography, 2017, 26, 952-962.	2.7	20
98	ls it interspecific information use or aggression between putative competitors that steers the selection of nestâ€site characteristics? A reply to Slagsvold and Wiebe. Journal of Avian Biology, 2018, 49, jav-01558.	0.6	20
99	Building and evaluating predictive occupancy models for the Siberian flying squirrel using forest planning data. Forest Ecology and Management, 2005, 216, 241-256.	1.4	19
100	Optimal contract length for biodiversity conservation under conservation budget constraint. Forest Policy and Economics, 2014, 47, 14-24.	1.5	19
101	Are habitat loss, predation risk and climate related to the drastic decline in a Siberian flying squirrel population? A 15â€year study. Population Ecology, 2014, 56, 341-348.	0.7	19
102	Forest management optimization across spatial scales to reconcile economic and conservation objectives. PLoS ONE, 2019, 14, e0218213.	1.1	19
103	Local habitat patch pattern of the Siberian flying squirrel in a managed boreal forest landscape. Ecography, 2007, 30, 277-287.	2.1	18
104	Habitat associations drive species vulnerability to climate change in boreal forests. Climatic Change, 2016, 135, 585-595.	1.7	18
105	Quantifying and resolving conservation conflicts in forest landscapes via multiobjective optimization. Silva Fennica, 2017, 51, .	0.5	18
106	Habitat quality is more important than matrix quality for bird communities in protected areas. Ecology and Evolution, 2018, 8, 4019-4030.	0.8	17
107	Interspecific information on predation risk affects nest site choice in a passerine bird. BMC Evolutionary Biology, 2018, 18, 181.	3.2	17
108	Perspectives on Palaearctic and Nearctic bird migration; comparisons and overview of lifeâ€history and ecology of migrant passerines. Ibis, 1992, 134, 7-13.	1.0	16

#	Article	IF	CITATIONS
109	Isolation, patch size and matrix effects on bird assemblages in forest reserves. Biodiversity and Conservation, 2014, 23, 3287-3300.	1.2	16
110	Energy availability, abundance, energy-use and species richness in forest bird communities: a test of the species-energy theory. Global Ecology and Biogeography, 2006, 15, 290-302.	2.7	15
111	Risk taking in natural predation risk gradients: support for risk allocation from breeding pied flycatchers. Animal Behaviour, 2011, 82, 1443-1447.	0.8	15
112	Energy density and its variation in space limit species richness of boreal forest birds. Journal of Biogeography, 2012, 39, 1462-1472.	1.4	15
113	Presence of other species may counter seasonal decline in breeding success: a field experiment with pied flycatchers Ficedula hypoleuca. Journal of Avian Biology, 2005, 36, 380-385.	0.6	14
114	Temporal patch occupancy dynamics of the Siberian flying squirrel in a boreal forest landscape. Ecography, 2008, 31, 469-476.	2.1	14
115	Conservation of forest biodiversity using temporal conservation contracts. Ecological Economics, 2012, 81, 121-129.	2.9	14
116	Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest. Journal of Environmental Management, 2016, 180, 366-374.	3.8	14
117	Cost-effective forest conservation and criteria for potential conservation targets: a Finnish case study. Environmental Science and Policy, 2008, 11, 613-626.	2.4	13
118	Cost-efficient strategies to preserve dead wood-dependent species in a managed forest landscape. Biological Conservation, 2016, 204, 197-204.	1.9	13
119	Resource use of wood-inhabiting fungi in different boreal forest types. Fungal Ecology, 2017, 27, 96-106.	0.7	13
120	Do environmental diversity approaches lead to improved site selection? A comparison with the multi-species approach. Forest Ecology and Management, 2008, 255, 3750-3757.	1.4	12
121	Does a voluntary conservation program result in a representative protected area network?. Ecological Economics, 2009, 68, 2974-2984.	2.9	12
122	Effects of Canopy Gap Disturbance on Forest Birds in Boreal Forests. Annales Zoologici Fennici, 2013, 50, 316-326.	0.2	12
123	Contemporary spatial and environmental factors determine vascular plant species richness on highly fragmented meadows in Central Finland. Landscape Ecology, 2018, 33, 2169-2187.	1.9	12
124	Economics of mixed-species forestry with ecosystem services. Canadian Journal of Forest Research, 2019, 49, 1219-1232.	0.8	12
125	Forest bioenergy harvesting changes carbon balance and risks biodiversity in boreal forest landscapes. Canadian Journal of Forest Research, 2020, 50, 1184-1193.	0.8	12
126	Management diversification increases habitat availability for multiple biodiversity indicator species in production forests. Landscape Ecology, 2022, 37, 443-459.	1.9	12

#	Article	IF	CITATIONS
127	Sensitivity of comparative analyses to population variation in trait values: clutch size and cavity excavation tendencies. Journal of Avian Biology, 2000, 31, 576-579.	0.6	11
128	Grouse dynamics and harvesting in Kainuu, northeastern Finland. Oikos, 2011, 120, 1057-1064.	1.2	11
129	Windthrow in streamside key habitats: Effects of buffer strip width and selective logging. Forest Ecology and Management, 2020, 475, 118405.	1.4	10
130	Manipulating Individual Decisions and Environmental Conditions Reveal Individual Quality in Decision-Making and Non-Lethal Costs of Predation Risk. PLoS ONE, 2012, 7, e52226.	1.1	10
131	Management diversity begets biodiversity in production forest landscapes. Biological Conservation, 2022, 268, 109514.	1.9	10
132	Alternative targets and economic efficiency of selecting protected areas for biodiversity conservation in boreal forest. Environmental and Resource Economics, 2007, 37, 713-732.	1.5	9
133	The role of novel forest ecosystems in the conservation of woodâ€inhabiting fungi in boreal broadleaved forests. Ecology and Evolution, 2016, 6, 6943-6954.	0.8	9
134	Projecting biodiversity and wood production in future forest landscapes: 15 key modeling considerations. Journal of Environmental Management, 2017, 197, 404-414.	3.8	9
135	Are small protected habitat patches within boreal production forests effective in conserving species richness, abundance and community composition? A systematic review. Environmental Evidence, 2021, 10, .	1.1	9
136	Regional Landscape Patterns and Distribution of the Siberian Flying SquirrelPteromys volansin Northern Finland. Wildlife Biology, 2002, 8, 267-278.	0.6	8
137	Avian Reproductive Output in European Forest Successions. Oikos, 1987, 50, 239.	1.2	7
138	Temporal variation of bird assemblages in moderately fragmented and less-fragmented boreal forest landscapes: A multi-scale approach. Ecoscience, 2000, 7, 256-266.	0.6	7
139	Short communication: Landscape and season effects on the diet of the Goshawk. Ibis, 2009, 151, 396-400.	1.0	7
140	Value of information in multiple criteria decision making: an application to forest conservation. Stochastic Environmental Research and Risk Assessment, 2019, 33, 2007-2018.	1.9	7
141	Solving Conflicts among Conservation, Economic, and Social Objectives in Boreal Production Forest Landscapes: Fennoscandian Perspectives. , 2018, , 169-219.		7
142	Interpreting wind damage risk–how multifunctional forest management impacts standing timber at risk of wind felling. European Journal of Forest Research, 2022, 141, 347-361.	1.1	7
143	Biotic homogenisation in bird communities leads to largeâ€scale changes in species associations. Oikos, 2022, 2022, .	1.2	7
144	Difficulty of Getting Accurate and Precise Estimates of Population Size: The Case of the Siberian Flying Squirrel in Finland. Annales Zoologici Fennici, 2008, 45, 521-526.	0.2	6

#	Article	IF	CITATIONS
145	Changing forest stakeholders' perception of ecosystem services with linguistic nudging. Ecosystem Services, 2019, 40, 101028.	2.3	6
146	Quantifying and easing conflicting goals between interest groups in natural resource planning. Canadian Journal of Forest Research, 2019, 49, 1233-1241.	0.8	6
147	Genetic diversity in the Siberian jay Perisoreus infaustus in fragmented old-growth forests of Fennoscandia. Ecography, 2000, 23, 669-677.	2.1	6
148	From a Crisis Discipline Towards Prognostic Conservation Practise: An Argument for Setting Aside Degraded Habitats. Annales Zoologici Fennici, 2017, 54, 27-37.	0.2	5
149	The effect of buffer strip width and selective logging on streamside polypore communities. Canadian Journal of Forest Research, 2020, 50, 717-725.	0.8	5
150	Effects of Predation on Community Assembly and Spatial Dispersion of Breeding Forest Birds. Ecology, 2001, 82, 232.	1.5	4
151	Boreal Forest Bird Assemblages and Their Conservation. , 0, , 183-230.		3
152	Evolution education in natural history museums. Trends in Ecology and Evolution, 2009, 24, 292-293.	4.2	3
153	Peer review by the Peers, for the Peers: response to Hettyey et al Trends in Ecology and Evolution, 2012, 27, 191-192.	4.2	3
154	What are the effects of even-aged and uneven-aged forest management on boreal forest biodiversity in Fennoscandia and European Russia? A systematic review protocol. Environmental Evidence, 2019, 8, .	1.1	3
155	Interaction of climate change with effects of conspecific and heterospecific density on reproduction. Oikos, 2020, 129, 1807-1819.	1.2	3
156	Retention forestry and biodiversity conservation: a parallel with agroforestry. Nature Conservation, 0, 4, 29-33.	0.0	3
157	Calculating minimum discrepancy to assess the nestedness of species assemblages. Community Ecology, 2009, 10, 141-145.	0.5	2
158	Assessing the functional connectivity of reserve networks in continuously varying nature under the constraints imposed by reality. Biological Conservation, 2011, 144, 1297-1298.	1.9	2
159	Landowner preferences and conservation prioritization: response to Nielsen et al Conservation Biology, 2017, 31, 1488-1490.	2.4	2
160	Do small protected habitat patches within boreal production forests provide value for biodiversity conservation? A systematic review protocol. Environmental Evidence, 2019, 8, .	1.1	2
161	Setting targets: tradeoffs between ecology and economics. , 2001, , 328-351.		1
162	Dynamic Animal Populations in Managed Forests: Species Ecological Requirements and Sustainable Harvesting. Annales Zoologici Fennici, 2015, 52, 221-235.	0.2	1

#	Article	IF	CITATIONS
163	Titmice are a better indicator of bird density in Northern European than in Western European forests. Ecology and Evolution, 2022, 12, e8479.	0.8	0