
Daniel Althoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/186742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crop NDVI Monitoring Based on Sentinel 1. Remote Sensing, 2019, 11, 1441.	1.8	64
2	Goodness-of-fit criteria for hydrological models: Model calibration and performance assessment. Journal of Hydrology, 2021, 600, 126674.	2.3	44
3	Detection, classification, and mapping of coffee fruits during harvest with computer vision. Computers and Electronics in Agriculture, 2021, 183, 106066.	3.7	35
4	Impacts of climate change on the evaporation and availability of water in small reservoirs in the Brazilian savannah. Climatic Change, 2020, 159, 215-232.	1.7	32
5	Impact of drought associated with high temperatures on Coffea canephora plantations: a case study in EspĂrito Santo State, Brazil. Scientific Reports, 2020, 10, 19719.	1.6	31
6	Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble. Stochastic Environmental Research and Risk Assessment, 2021, 35, 1051-1067.	1.9	28
7	Improving methods for estimating small reservoir evaporation in the Brazilian Savanna. Agricultural Water Management, 2019, 216, 105-112.	2.4	26
8	EToâ€Brazil: A Daily Gridded Reference Evapotranspiration Data Set for Brazil (2000–2018). Water Resources Research, 2020, 56, e2020WR027562.	1.7	25
9	Comparison between observations and gridded data sets over complex terrain in the Chilean Andes: Precipitation and temperature. International Journal of Climatology, 2020, 40, 5266-5288.	1.5	23
10	THE EXPANSION OF CENTER-PIVOT IRRIGATION IN THE CERRADO BIOME. Irriga, 2019, 1, 56-61.	0.2	21
11	Evaluating Evaporation Methods for Estimating Small Reservoir Water Surface Evaporation in the Brazilian Savannah. Water (Switzerland), 2019, 11, 1942.	1.2	20
12	Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier. Theoretical and Applied Climatology, 2020, 142, 1481-1492.	1.3	19
13	Evaluating the Latest IMERG Products in a Subtropical Climate: The Case of Paraná State, Brazil. Remote Sensing, 2021, 13, 906.	1.8	16
14	Untangling hybrid hydrological models with explainable artificial intelligence. H2Open Journal, 2021, 4, 13-28.	0.8	15
15	Addressing hydrological modeling in watersheds under land cover change with deep learning. Advances in Water Resources, 2021, 154, 103965.	1.7	15
16	Improvement of Hargreaves–Samani Reference Evapotranspiration Estimates with Local Calibration. Water (Switzerland), 2019, 11, 2272.	1.2	14
17	VEGETATION INDICES FOR IRRIGATED CORN MONITORING. Engenharia Agricola, 2020, 40, 322-333.	0.2	12
18	Fusion of MODIS and Landsat-Like Images for Daily High Spatial Resolution NDVI. Remote Sensing, 2020, 12, 1297.	1.8	11

DANIEL ALTHOFF

#	Article	IF	CITATIONS
19	Heuristic methods applied in reference evapotranspiration modeling. Ciencia E Agrotecnologia, 2018, 42, 314-324.	1.5	10
20	Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory. Agricultural Water Management, 2019, 226, 105785.	2.4	10
21	Estimating Small Reservoir Evaporation Using Machine Learning Models for the Brazilian Savannah. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	0.8	10
22	Predicting runoff series in ungauged basins of the Brazilian Cerrado biome. Environmental Modelling and Software, 2022, 149, 105315.	1.9	10
23	Modeling the Net Primary Productivity: A Study Case in the Brazilian Territory. Journal of the Indian Society of Remote Sensing, 2019, 47, 1727-1735.	1.2	8
24	Impact of climate change on groundwater recharge in a Brazilian Savannah watershed. Theoretical and Applied Climatology, 2021, 143, 1425-1436.	1.3	7
25	DYNAMICS OF ACTUAL CROP EVAPOTRANSPIRATION BASED IN THE COMPARATIVE ANALYSIS OF SEBAL AND METRIC-EEFLUX. Irriga, 2019, 1, 72-80.	0.2	7
26	Evapotranspiration for irrigated agriculture using orbital satellites. Bioscience Journal, 0, , 670-678.	0.4	5
27	Gauging the Ungauged: Regionalization of Flow Indices at Grid Level. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	0.8	4
28	Assessing rainfall spatial variability in the Brazilian savanna region with TMPA rainfall dataset. Journal of South American Earth Sciences, 2021, 111, 103482.	0.6	4
29	SENSITIVITY OF EVAPOTRANSPIRATION ESTIMATED BY ORBITAL IMAGES UNDER INFLUENCE OF SURFACE TEMPERATURE. Engenharia Agricola, 2019, 39, 23-32.	0.2	4
30	Assessment of water availability vulnerability in the Cerrado. Applied Water Science, 2021, 11, 1.	2.8	4
31	Spectral sensors prove beneficial in determining nitrogen fertilizer needs of <i>Urochloa brizantha</i> cv. Xaraés grass in Brazil. Tropical Grasslands - Forrajes Tropicales, 2020, 8, 60-71.	0.1	3
32	Biophysical Parameters and Actual Evapotranspiration of Bean Culture by Means of Remote Sensing. Journal of Agricultural Science, 2019, 11, 156.	0.1	3
33	Productivity and water demand of maize estimated by the modified satellite Priestley-Taylor algorithm. Semina:Ciencias Agrarias, 2019, 40, 2991.	0.1	1
34	Alternative low-cost precipitation kit for assessing irrigation systems. Semina:Ciencias Agrarias, 2020, 42, 1783-1798.	0.1	1
35	Streamflow Regionalization Considering Water Balance with Actual Evapotranspiration Estimated from Remote Sensing. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	0.8	1
36	Mapping coffee yield with computer vision. Precision Agriculture, 2022, 23, 2372-2387.	3.1	1