List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1867415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International network of cancer genome projects. Nature, 2010, 464, 993-998.	13.7	2,114
2	Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 2004, 428, 493-521.	13.7	1,943
3	Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature, 2011, 475, 101-105.	13.7	1,364
4	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	9.4	1,034
5	Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Research, 2008, 36, e105.	6.5	914
6	Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nature Genetics, 2012, 44, 47-52.	9.4	893
7	The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 2014, 505, 546-549.	13.7	569
8	Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems. Genome Biology, 2011, 12, R112.	13.9	513
9	Identification of a mutation in the extracellular domain of the Epidermal Growth Factor Receptor conferring cetuximab resistance in colorectal cancer. Nature Medicine, 2012, 18, 221-223.	15.2	434
10	The nature and identification of quantitative trait loci: a community's view. Nature Reviews Genetics, 2003, 4, 911-916.	7.7	390
11	An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature, 2004, 432, 1036-1040.	13.7	369
12	Genetic analysis of the mouse brain proteome. Nature Genetics, 2002, 30, 385-393.	9.4	293
13	Architecture and evolution of a minute plant genome. Nature, 2013, 498, 94-98.	13.7	293
14	SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Research, 2007, 17, 1697-1706.	2.4	230
15	Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13970-13975.	3.3	192
16	Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biology, 2016, 17, 32.	3.8	166
17	Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. European Journal of Immunology, 2000, 30, 1040-1047.	1.6	162
18	Exploiting single-molecule transcript sequencing for eukaryotic gene prediction. Genome Biology, 2015, 16, 184.	3.8	148

#	Article	IF	CITATIONS
19	The Role of a Pseudo-Response Regulator Gene in Life Cycle Adaptation and Domestication of Beet. Current Biology, 2012, 22, 1095-1101.	1.8	135
20	Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming. Rna, 2012, 18, 958-972.	1.6	133
21	The Genomic Sequence and Comparative Analysis of the Rat Major Histocompatibility Complex. Genome Research, 2004, 14, 631-639.	2.4	108
22	Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nature Ecology and Evolution, 2017, 1, 1961-1969.	3.4	95
23	Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in embryonic stem cells. Nature Communications, 2014, 5, 3719.	5.8	94
24	<i>ojoplano</i> -mediated basal constriction is essential for optic cup morphogenesis. Development (Cambridge), 2009, 136, 2165-2175.	1.2	84
25	The gene for autosomal dominant polycystic kidney disease lies in a 750-kb CpG-rich region. Genomics, 1992, 13, 144-151.	1.3	80
26	Characterizing the mouse ES cell transcriptome with Illumina sequencing. Genomics, 2008, 92, 187-194.	1.3	79
27	Strand-specific deep sequencing of the transcriptome. Genome Research, 2010, 20, 989-999.	2.4	76
28	Benchmarking of long-read correction methods. NAR Genomics and Bioinformatics, 2020, 2, Iqaa037.	1.5	75
29	Conventional Knockout of Tbc1d1 in Mice Impairs Insulin- and AICAR-Stimulated Glucose Uptake in Skeletal Muscle. Endocrinology, 2013, 154, 3502-3514.	1.4	61
30	Palaeohexaploid ancestry for Caryophyllales inferred from extensive geneâ€based physical and genetic mapping of the sugar beet genome (<i>Beta vulgaris</i>). Plant Journal, 2012, 70, 528-540.	2.8	58
31	Disruption and pseudoautosomal localization of the major histocompatibility complex in monotremes. Genome Biology, 2007, 8, R175.	13.9	55
32	The FunGenES Database: A Genomics Resource for Mouse Embryonic Stem Cell Differentiation. PLoS ONE, 2009, 4, e6804.	1.1	54
33	Formation of hepatic DNA adducts by methyleugenol in mouse models: drastic decrease by Sult1a1 knockout and strong increase by transgenic human SULT1A1/2. Carcinogenesis, 2014, 35, 935-941.	1.3	50
34	Comparative Mapping of Mouse and Rat Chromosomes by Fluorescencein SituHybridization. Genomics, 1999, 55, 306-313.	1.3	46
35	cDNA subtraction cloning reveals novel genes whose temporal and spatial expression indicates association with trophoblast invasion. Developmental Biology, 2000, 222, 158-169.	0.9	46
36	UniGene cDNA array-based monitoring of transcriptome changes during mouse placental development. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13126-13131.	3.3	46

#	Article	IF	CITATIONS
37	Integrated and Sequence-Ordered BAC- and YAC-Based Physical Maps for the Rat Genome. Genome Research, 2004, 14, 766-779.	2.4	44
38	Comparative transcriptomics of early dipteran development. BMC Genomics, 2013, 14, 123.	1.2	41
39	Fine genetic localization of the gene for autosomal dominant polycystic kidney disease (PKD1) with respect to physically mapped markers. Genomics, 1992, 13, 152-158.	1.3	37
40	Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mobile DNA, 2013, 4, 8.	1.3	36
41	Profiling of extensively diversified plant <scp>LINE</scp> s reveals distinct plantâ€specific subclades. Plant Journal, 2014, 79, 385-397.	2.8	35
42	p53 Gene Repair with Zinc Finger Nucleases Optimised by Yeast 1-Hybrid and Validated by Solexa Sequencing. PLoS ONE, 2011, 6, e20913.	1.1	34
43	Determination of Sulfotransferase Forms Involved in the Metabolic Activation of the Genotoxicant 1-Hydroxymethylpyrene Using Bacterially Expressed Enzymes and Genetically Modified Mouse Models. Chemical Research in Toxicology, 2014, 27, 1060-1069.	1.7	34
44	A proteomic method for the analysis of changes in protein concentrations in response to systemic perturbations using metabolic incorporation of stable isotopes and mass spectrometry. Proteomics, 2005, 5, 3563-3570.	1.3	33
45	Role of Medium- and Short-Chain L-3-Hydroxyacyl-CoA Dehydrogenase in the Regulation of Body Weight and Thermogenesis. Endocrinology, 2011, 152, 4641-4651.	1.4	33
46	Microarray and deep sequencing cross-platform analysis of the mirRNome and isomiR variation in response to epidermal growth factor. BMC Genomics, 2013, 14, 371.	1.2	33
47	A first generation physical map of the medaka genome in BACs essential for positional cloning and clone-by-clone based genomic sequencing. Mechanisms of Development, 2004, 121, 903-913.	1.7	32
48	Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L Chromosome Research, 2006, 14, 831-844.	1.0	31
49	Epigenetic profiling of heterochromatic satellite DNA. Chromosoma, 2011, 120, 409-422.	1.0	31
50	Parental origin of the allotetraploid tobacco <i>Nicotiana benthamiana</i> . Plant Journal, 2020, 102, 541-554.	2.8	31
51	Construction of a map of chromosome 16 by using radiation hybrids Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 104-108.	3.3	30
52	Panel of Microsatellite Markers for Whole-Genome Scans and Radiation Hybrid Mapping and a Mouse Family Tree. Genome Research, 1999, 9, 878-887.	2.4	30
53	Neuronal functions, feeding behavior, and energy balance in Slc2a3+/â^' mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1084-E1094.	1.8	30
54	Divergent genetic and epigenetic post-zygotic isolation mechanisms in Mus and Peromyscus. Journal of Evolutionary Biology, 2004, 17, 453-460.	0.8	29

HEINZ HIMMELBAUER

#	Article	IF	CITATIONS
55	New members of the neurexin superfamily: multiple rodent homologues of the human CASPR5 gene. Mammalian Genome, 2006, 17, 723-731.	1.0	29
56	Altered tissue distribution of 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine-DNA adducts in mice transgenic for human sulfotransferases 1A1 and 1A2. Carcinogenesis, 2011, 32, 1734-1740.	1.3	29
57	Diversification, evolution and methylation of short interspersed nuclear element families in sugar beet and related Amaranthaceae species. Plant Journal, 2016, 85, 229-244.	2.8	29
58	High-Resolution Comparative Mapping of Mouse Chromosome 17. Genomics, 1993, 17, 110-120.	1.3	28
59	Genomes of the wild beets <i>Beta patula</i> and <i>Beta vulgaris</i> ssp. <i>maritima</i> . Plant Journal, 2019, 99, 1242-1253.	2.8	28
60	Evolutionary reshuffling in the Errantivirus lineage Elbe within the <i>Beta vulgaris</i> genome. Plant Journal, 2012, 72, 636-651.	2.8	26
61	The genome of Ectocarpus subulatus – A highly stress-tolerant brown alga. Marine Genomics, 2020, 52, 100740.	0.4	26
62	Human-mouse homologies in the region of the polycystic kidney disease gene (PKD1). Genomics, 1992, 13, 35-38.	1.3	25
63	Construction and characterization of a sugar beet (<i>Beta vulgaris</i>) fosmid library. Genome, 2008, 51, 948-951.	0.9	25
64	MEPD: a resource for medaka gene expression patterns. Bioinformatics, 2005, 21, 3195-3197.	1.8	24
65	Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks. PLoS ONE, 2007, 2, e1218.	1.1	24
66	WDR55 Is a Nucleolar Modulator of Ribosomal RNA Synthesis, Cell Cycle Progression, and Teleost Organ Development. PLoS Genetics, 2008, 4, e1000171.	1.5	23
67	Comparative transcriptome analysis of a Trichoplusia ni cell line reveals distinct host responses to intracellular and secreted protein products expressed by recombinant baculoviruses. Journal of Biotechnology, 2018, 270, 61-69.	1.9	23
68	nextPARS: parallel probing of RNA structures in Illumina. Rna, 2018, 24, 609-619.	1.6	23
69	A General Protein O-Glycosylation Gene Cluster Encodes the Species-Specific Glycan of the Oral Pathogen Tannerella forsythia: O-Glycan Biosynthesis and Immunological Implications. Frontiers in Microbiology, 2018, 9, 2008.	1.5	23
70	Subgenome evolution in allotetraploid plants. Plant Journal, 2021, 106, 672-688.	2.8	23
71	Higher-order genome organization in platypus and chicken sperm and repositioning of sex chromosomes during mammalian evolution. Chromosoma, 2009, 118, 53-69.	1.0	22

Differential Expression Patterns of Non-Symbiotic Hemoglobins in Sugar Beet (Beta vulgaris ssp.) Tj ETQq0 0 0 rgBT_{1.5}/Overlock 10 Tf 50 6

#	Article	IF	CITATIONS
73	Genome and transcriptome characterization of the glycoengineered Nicotiana benthamiana line ΔXT/FT. BMC Genomics, 2019, 20, 594.	1.2	20
74	Positional cloning of the Hybrid sterility 1 gene: fine genetic mapping and evaluation of two candidate genes. Biological Journal of the Linnean Society, 2005, 84, 637-641.	0.7	19
75	Haplotype divergence in <i>Beta vulgaris</i> and microsynteny with sequenced plant genomes. Plant Journal, 2009, 57, 14-26.	2.8	19
76	Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis. BMC Genomics, 2011, 12, 326.	1.2	19
77	Mouse chromosome 17. Mammalian Genome, 1993, 4, S230-S252.	1.0	18
78	Identification and characterization of G90, a novel mouse RNA that lacks an extensive open reading frame. Gene, 1999, 232, 35-42.	1.0	18
79	Reliable In Silico Identification of Sequence Polymorphisms and Their Application for Extending the Genetic Map of Sugar Beet (Beta vulgaris). PLoS ONE, 2014, 9, e110113.	1.1	18
80	Pronounced Alterations of Cellular Metabolism and Structure Due to Hyper- or Hypo-Osmosis. Journal of Proteome Research, 2008, 7, 3968-3983.	1.8	17
81	The <scp>CHH</scp> motif in sugar beet satellite <scp>DNA</scp> : a modulator for cytosine methylation. Plant Journal, 2014, 78, 937-950.	2.8	17
82	The 474-Kilobase-Pair Complete Genome Sequence of CeV-01B, a Virus Infecting <i>Haptolina</i> () Tj ETQq0 (0 rgBT /0	verlock 10 Tf 5
83	Genomic distances reveal relationships of wild and cultivated beets. Nature Communications, 2022, 13, 2021.	5.8	17
84	High-Throughput Scanning of the Rat Genome Using Interspersed Repetitive Sequence-PCR Markers. Genomics, 2000, 69, 287-294.	1.3	16
85	Partial short-read sequencing of a highly inbred Iberian pig and genomics inference thereof. Heredity, 2011, 107, 256-264.	1.2	16
86	Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. Plant Molecular Biology, 2012, 78, 393-405.	2.0	16
87	Genomic analysis of the blood attributed to Louis XVI (1754–1793), king of France. Scientific Reports, 2015, 4, 4666.	1.6	16
88	IRS-PCR-based genetic mapping of the huntingtin interacting protein gene (HIP1) on mouse Chromosome 5. Mammalian Genome, 1998, 9, 26-31.	1.0	15
89	Physical mapping of the major histocompatibility complex class II and class III regions of the rat. Immunogenetics, 2002, 54, 268-275.	1.2	15
90	The DNA sequence of medaka chromosome LG22. Genomics, 2007, 89, 124-133.	1.3	14

HEINZ HIMMELBAUER

#	Article	IF	CITATIONS
91	High-resolution genetic analysis of a deletion on mouse Chromosome 17 extending over the Fused, tufted, and homeobox Nkx2-5 loci. Mammalian Genome, 1994, 5, 814-816.	1.0	13
92	Expression analysis of proline rich 15 (<i>Prr15</i>) in mouse and human gastrointestinal tumors. Molecular Carcinogenesis, 2011, 50, 8-15.	1.3	13
93	Genetic and Epigenetic Variation across Genes Involved in Energy Metabolism and Mitochondria of Chinese Hamster Ovary Cell Lines. Biotechnology Journal, 2019, 14, e1800681.	1.8	13
94	Prediction of <scp>NBâ€LRR</scp> resistance genes based on fullâ€length sequence homology. Plant Journal, 2022, 110, 1592-1602.	2.8	13
95	Localization of the HumanHIP1Gene Close to the Elastin (ELN) Locus on 7q11.23. Genomics, 1997, 46, 313-315.	1.3	12
96	Dissecting the Effect of Genetic Variation on the Hepatic Expression of Drug Disposition Genes across the Collaborative Cross Mouse Strains. Frontiers in Genetics, 2016, 7, 172.	1.1	12
97	Oligoadenylation of 3′ decay intermediates promotes cytoplasmic mRNA degradation in <i>Drosophila</i> cells. Rna, 2016, 22, 428-442.	1.6	12
98	Characterization of the Mouse Src Homology 3 Domain GeneSh3d2con Chr 7 Demonstrates Coexpression with Huntingtin in the Brain and Identifies the Processed PseudogeneSh3d2c-ps1on Chr 2. Genomics, 1998, 54, 505-510.	1.3	11
99	Comparison of PCR-based mutation detection methods and application for identification of mouseSult1a1 mutant embryonic stem cell clones using pooled templates. Human Mutation, 2005, 25, 483-490.	1.1	11
100	Cytosine Methylation of an Ancient Satellite Family in the Wild Beet <i>Beta procumbens</i> . Cytogenetic and Genome Research, 2014, 143, 157-167.	0.6	11
101	Induction and Selection of Sox17-Expressing Endoderm Cells Generated from Murine Embryonic Stem Cells. Cells Tissues Organs, 2012, 195, 507-523.	1.3	10
102	Expression of the von Hippel-Lindau-binding protein-1 (Vbp1) in fetal and adult mouse tissues. Human Molecular Genetics, 1999, 8, 229-236.	1.4	9
103	Characterization of trimethylpsoralen as a mutagen for mouse embryonic stem cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 525, 67-76.	0.4	9
104	Identification of ALK Gene Alterations in Urothelial Carcinoma. PLoS ONE, 2014, 9, e103325.	1.1	9
105	Comparative genome characterization of the periodontal pathogen Tannerella forsythia. BMC Genomics, 2020, 21, 150.	1.2	9
106	Technology development at the interface of proteome research and genomics: Mapping nonpolymorphic proteins on the physical map of mouse chromosomes. Electrophoresis, 1999, 20, 1027-1032.	1.3	8
107	Current Status of Medaka Genetics and Genomics. Methods in Cell Biology, 2004, 77, 173-199.	0.5	8
108	Mouse splice mutant generation from ENU-treated ES cells—A gene-driven approach. Genomics, 2005, 85, 557-562.	1.3	8

#	Article	IF	CITATIONS
109	A mouse translocation associated with Caspr5-2 disruption and perinatal lethality. Mammalian Genome, 2008, 19, 675-686.	1.0	8
110	Identification of mediator complex 26 (Crsp7) gametologs on platypus X1 and Y5 sex chromosomes: a candidate testis-determining gene in monotremes?. Chromosome Research, 2012, 20, 127-138.	1.0	8
111	Advanced Integrated Mouse YAC Map Including BAC Framework. Genome Research, 2001, 11, 2142-2150.	2.4	7
112	Comparative genomics of medaka and fugu. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2006, 1, 6-12.	0.4	7
113	Container-aided integrative QTL and RNA-seq analysis of Collaborative Cross mice supports distinct sex-oriented molecular modes of response in obesity. BMC Genomics, 2020, 21, 761.	1.2	7
114	Assembly and characterization of the genome of chard (Beta vulgaris ssp. vulgaris var. cicla). Journal of Biotechnology, 2021, 333, 67-76.	1.9	7
115	Refined radiation hybrid map of mouse Chromosome 17. Mammalian Genome, 1998, 9, 807-811.	1.0	6
116	The Mouse Psma1 Gene Coding for the α-Type C2 Proteasome Subunit: Structural and Functional Analysis, Mapping, and Colocalization with Pde3b on Mouse Chromosome 7. Genomics, 2000, 66, 313-323.	1.3	6
117	Cloning of mouse ojoplano, a reticular cytoplasmic protein expressed during embryonic development. Gene Expression Patterns, 2009, 9, 562-567.	0.3	6
118	High-throughput identification of genetic markers using representational oligonucleotide microarray analysis. Theoretical and Applied Genetics, 2010, 121, 549-565.	1.8	6
119	Global transcriptomic analysis of murine embryonic stem cellâ€derived brachyury ⁺ (T) cells. Genes To Cells, 2010, 15, 209-228.	0.5	5
120	Complex probes for high-throughput parallel genetic mapping of genomic mouse BAC clones. Mammalian Genome, 1998, 9, 611-616.	1.0	4
121	Quinoa genome assembly employing genomic variation for guided scaffolding. Theoretical and Applied Genetics, 2021, 134, 3577-3594.	1.8	4
122	Adaptive Evolution in Producing Microtiter Cultivations Generates Genetically Stable <i>EscherichiaÂcoli</i> Production Hosts for Continuous Bioprocessing. Biotechnology Journal, 2021, 16, e2000376.	1.8	2