
Matthew Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1867294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Underlying solvent-based factors that influence permanent porosity in porous liquids. Nano Research, 2022, 15, 3533-3538.	5.8	8
2	Charge Carrier Molecular Sieve (CCMS) Membranes with Anti-aging Effect for Long-Life Vanadium Redox Flow Batteries. ACS Applied Energy Materials, 2022, 5, 1505-1515.	2.5	9
3	Exceptional lithium diffusion through porous aromatic framework (PAF) interlayers delivers high capacity and long-life lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 902-911.	5.2	17
4	Practical considerations in the design and use of porous liquids. Materials Horizons, 2022, 9, 1577-1601.	6.4	23
5	Synergistically improved PIM-1 membrane gas separation performance by PAF-1 incorporation and UV irradiation. Journal of Materials Chemistry A, 2022, 10, 10107-10119.	5.2	20
6	Porous solid inspired hyper-crosslinked polymer liquids with highly efficient regeneration for gas purification. Science China Materials, 2022, 65, 1937-1942.	3.5	3
7	Enhanced Membrane Performance for Gas Separation by Coupling Effect of the Porous Aromatic Framework (PAF) Incorporation and Photo-Oxidation. Industrial & Engineering Chemistry Research, 2022, 61, 6190-6199.	1.8	6
8	Underlying Polar and Nonpolar Modification MOF-Based Factors that Influence Permanent Porosity in Porous Liquids. ACS Applied Materials & amp; Interfaces, 2022, 14, 23392-23399.	4.0	11
9	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	11.1	82
10	How Reproducible are Surface Areas Calculated from the BET Equation? (Adv. Mater. 27/2022). Advanced Materials, 2022, 34, .	11.1	4
11	Construction of ultrathin PTMSP/Porous nanoadditives membranes for highly efficient organic solvent nanofiltration (OSN). Journal of Membrane Science, 2021, 620, 118911.	4.1	15
12	Separator Design Variables and Recommended Characterization Methods for Viable Lithium–Sulfur Batteries. Advanced Materials Technologies, 2021, 6, 2001136.	3.0	26
13	Metal–Organic Frameworkâ€Based Ionâ€Selective Membranes. Advanced Materials Technologies, 2021, 6, 2000790.	3.0	28
14	Highly-Efficient Sulfonated UiO-66(Zr) Optical Fiber for Rapid Detection of Trace Levels of Pb2+. International Journal of Molecular Sciences, 2021, 22, 6053.	1.8	13
15	Enhancing polyimide-based mixed matrix membranes performance for CO2 separation containing PAF-1 and p-DCX. Separation and Purification Technology, 2021, 268, 118677.	3.9	14
16	A saccharide-based binder for efficient polysulfide regulations in Li-S batteries. Nature Communications, 2021, 12, 5375.	5.8	65
17	Pure- and mixed-gas transport properties of a microporous Tröger's Base polymer (PIM-EA-TB). Polymer, 2021, 236, 124295.	1.8	7
18	<i>In Situ</i> Investigation of Multicomponent MOF Crystallization during Rapid Continuous Flow Synthesis. ACS Applied Materials & Interfaces, 2021, 13, 54284-54293.	4.0	8

#	Article	IF	CITATIONS
19	Physical and chemical reaction sensing in a mixed aqueous solution via metalâ€organic framework thinâ€film coated optical fiber. Microwave and Optical Technology Letters, 2020, 62, 72-77.	0.9	3
20	Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Science Advances, 2020, 6, eaay2757.	4.7	152
21	A Pilotâ€Scale Demonstration of Mobile Direct Air Capture Using Metalâ€Organic Frameworks. Advanced Sustainable Systems, 2020, 4, 2000101.	2.7	37
22	Tailoring molecular interactions between microporous polymers in high performance mixed matrix membranes for gas separations. Nanoscale, 2020, 12, 17405-17410.	2.8	18
23	Designer Self-Assembled Polyelectrolyte Complex Nanoparticle Membrane for a Stable Lithium–Sulfur Battery at Lean Electrolyte Conditions. ACS Applied Energy Materials, 2020, 3, 7908-7919.	2.5	15
24	Mixed donor, phenanthroline photoactive MOFs with favourable CO ₂ selectivity. Chemical Communications, 2020, 56, 13377-13380.	2.2	2
25	Performance evaluation of CuBTC composites for room temperature oxygen storage. RSC Advances, 2020, 10, 40960-40968.	1.7	7
26	Sulfonated Sub-1-nm Metal–Organic Framework Channels with Ultrahigh Proton Selectivity. Journal of the American Chemical Society, 2020, 142, 9827-9833.	6.6	41
27	Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nanoâ€ŧoâ€6ubnano Confined Water Clusters. Advanced Materials, 2020, 32, e2001777.	11.1	72
28	Engineered Porous Nanocomposites That Deliver Remarkably Low Carbon Capture Energy Costs. Cell Reports Physical Science, 2020, 1, 100070.	2.8	26
29	Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nature Materials, 2020, 19, 767-774.	13.3	275
30	Greatly Enhanced Gas Selectivity in Mixed-Matrix Membranes through Size-Controlled Hyper-cross-linked Polymer Additives. Industrial & Engineering Chemistry Research, 2020, 59, 13773-13782.	1.8	19
31	Control of Physical Aging in Super-Glassy Polymer Mixed Matrix Membranes. Accounts of Chemical Research, 2020, 53, 1381-1388.	7.6	35
32	Highly permeable and selective mixed-matrix membranes for hydrogen separation containing PAF-1. Journal of Materials Chemistry A, 2020, 8, 14713-14720.	5.2	30
33	Effect of direct-current magnetic field on the specific absorption rate of metamagnetic CoMnSi: A potential approach to switchable hyperthermia therapy. AIP Advances, 2020, 10, 015128.	0.6	6
34	Enhancing Multicomponent Metal–Organic Frameworks for Low Pressure Liquid Organic Hydrogen Carrier Separations. Angewandte Chemie, 2020, 132, 6146-6154.	1.6	10
35	Enhancing Multicomponent Metal–Organic Frameworks for Low Pressure Liquid Organic Hydrogen Carrier Separations. Angewandte Chemie - International Edition, 2020, 59, 6090-6098.	7.2	50
36	Magnetic Metal–Organic Framework Composites: Solvent-Free Synthesis and Regeneration Driven by Localized Magnetic Induction Heat. ACS Sustainable Chemistry and Engineering, 2019, 7, 13627-13632.	3.2	29

#	Article	IF	CITATIONS
37	Continuous Flow Synthesis of a Zr Magnetic Framework Composite for Post ombustion CO ₂ Capture. Chemistry - A European Journal, 2019, 25, 13184-13188.	1.7	27
38	Solvation Effects on the Permeation and Aging Performance of PIM-1-Based MMMs for Gas Separation. ACS Applied Materials & Interfaces, 2019, 11, 6502-6511.	4.0	43
39	Efficient delivery of oxygen <i>via</i> magnetic framework composites. Journal of Materials Chemistry A, 2019, 7, 3790-3796.	5.2	15
40	Highly permeable Thermally Rearranged Mixed Matrix Membranes (TR-MMM). Journal of Membrane Science, 2019, 585, 260-270.	4.1	47
41	Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nature Communications, 2019, 10, 2490.	5.8	158
42	Upcycling a plastic cup: one-pot synthesis of lactate containing metal organic frameworks from polylactic acid. Chemical Communications, 2019, 55, 7319-7322.	2.2	31
43	CUB-5: A Contoured Aliphatic Pore Environment in a Cubic Framework with Potential for Benzene Separation Applications. Journal of the American Chemical Society, 2019, 141, 3828-3832.	6.6	87
44	Magnetic Framework Composites for Low Concentration Methane Capture. Industrial & Engineering Chemistry Research, 2018, 57, 6040-6047.	1.8	17
45	Towards energy efficient separations with metal organic frameworks. Chemical Communications, 2018, 54, 2825-2837.	2.2	25
46	Aqueous contaminant detection via UiO-66 thin film optical fiber sensor platform with fast Fourier transform based spectrum analysis. Journal Physics D: Applied Physics, 2018, 51, 025601.	1.3	8
47	Enhanced Polymer Crystallinity in Mixed-Matrix Membranes Induced by Metal–Organic Framework Nanosheets for Efficient CO ₂ Capture. ACS Applied Materials & Interfaces, 2018, 10, 43095-43103.	4.0	55
48	Microporous carbon from fullerene impregnated porous aromatic frameworks for improving the desalination performance of thin film composite forward osmosis membranes. Journal of Materials Chemistry A, 2018, 6, 11327-11336.	5.2	37
49	MOF-Coated Optical Fiber Sensor for Detection of 4-Aminopyridine in Water. , 2018, , .		0
50	Low-Energy CO ₂ Release from Metal–Organic Frameworks Triggered by External Stimuli. Accounts of Chemical Research, 2017, 50, 778-786.	7.6	104
51	Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage. Chemistry of Materials, 2017, 29, 2844-2854.	3.2	169
52	Metal organic framework based catalysts for CO ₂ conversion. Materials Horizons, 2017, 4, 345-361.	6.4	359
53	Permselective membranes in lithium–sulfur batteries. Current Opinion in Chemical Engineering, 2017, 16, 31-38.	3.8	20
54	New synthetic routes towards MOF production at scale. Chemical Society Reviews, 2017, 46, 3453-3480	18.7	649

#	Article	IF	CITATIONS
55	Highly active catalyst for CO ₂ methanation derived from a metal organic framework template. Journal of Materials Chemistry A, 2017, 5, 12990-12997.	5.2	95
56	Magnetic Induction Framework Synthesis: A General Route to the Controlled Growth of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 6186-6190.	3.2	34
57	Hyper-Cross-Linked Additives that Impede Aging and Enhance Permeability in Thin Polyacetylene Films for Organic Solvent Nanofiltration. ACS Applied Materials & Interfaces, 2017, 9, 14401-14408.	4.0	69
58	Organic Microporous Nanofillers with Unique Alcohol Affinity for Superior Ethanol Recovery toward Sustainable Biofuels. ChemSusChem, 2017, 10, 1887-1891.	3.6	27
59	Building Additional Passageways in Polyamide Membranes with Hydrostable Metal Organic Frameworks To Recycle and Remove Organic Solutes from Various Solvents. ACS Applied Materials & Interfaces, 2017, 9, 38877-38886.	4.0	93
60	Light-triggered 5-fluorouracil delivery via UiO-66 coated optical fiber. Proceedings of SPIE, 2017, , .	0.8	0
61	Missing Linker Defects in a Homochiral Metal–Organic Framework: Tuning the Chiral Separation Capacity. Journal of the American Chemical Society, 2017, 139, 18322-18327.	6.6	74
62	Graphitic carbon nanofiber growth from catalytic-metal organic frameworks & their electrochemical double layer properties. Journal of Materials Chemistry A, 2017, 5, 25338-25349.	5.2	8
63	Post-Synthetic Annealing: Linker Self-Exchange in UiO-66 and Its Effect on Polymer–Metal Organic Framework Interaction. Crystal Growth and Design, 2017, 17, 4384-4392.	1.4	37
64	Framework-mediated synthesis of highly microporous onion-like carbon: energy enhancement in supercapacitors without compromising power. Journal of Materials Chemistry A, 2017, 5, 2519-2529.	5.2	42
65	CO ₂ Adsorption in Azobenzene Functionalized Stimuli Responsive Metal–Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 16658-16667.	1.5	53
66	A Robust Metal–Organic Framework for Dynamic Lightâ€Induced Swing Adsorption of Carbon Dioxide. Chemistry - A European Journal, 2016, 22, 11176-11179.	1.7	55
67	Metalâ€Organicâ€Framework oated Optical Fibers as Lightâ€Triggered Drug Delivery Vehicles. Advanced Functional Materials, 2016, 26, 3244-3249.	7.8	88
68	Scalability of Continuous Flow Production of Metal–Organic Frameworks. ChemSusChem, 2016, 9, 938-941.	3.6	76
69	Magnetic Metal–Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release. Advanced Materials, 2016, 28, 1839-1844.	11.1	107
70	Facile stabilization of cyclodextrin metal–organic frameworks under aqueous conditions via the incorporation of C ₆₀ in their matrices. Chemical Communications, 2016, 52, 5973-5976.	2.2	81
71	UiO-66 MOF end-face-coated optical fiber in aqueous contaminant detection. Optics Letters, 2016, 41, 1696.	1.7	33
72	Magnetic Induction Swing Adsorption: An Energy Efficient Route to Porous Adsorbent Regeneration. Chemistry of Materials, 2016, 28, 6219-6226.	3.2	59

#	Article	IF	CITATIONS
73	Suppressed Polysulfide Crossover in Li–S Batteries through a High-Flux Graphene Oxide Membrane Supported on a Sulfur Cathode. ACS Nano, 2016, 10, 7768-7779.	7.3	144
74	MaLISA – a cooperative method to release adsorbed gases from metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 18757-18762.	5.2	46
75	Hypercrosslinked Additives for Ageless Gas‣eparation Membranes. Angewandte Chemie, 2016, 128, 2038-2041.	1.6	17
76	Visible Light Triggered CO ₂ Liberation from Silver Nanocrystals Incorporated Metal–Organic Frameworks. Advanced Functional Materials, 2016, 26, 4815-4821.	7.8	53
77	Interpenetrated Zirconium–Organic Frameworks: Small Cavities versus Functionalization for CO ₂ Capture. Journal of Physical Chemistry C, 2016, 120, 13013-13023.	1.5	13
78	Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite films. Journal of Materials Chemistry A, 2016, 4, 10627-10634.	5.2	62
79	Hypercrosslinked Additives for Ageless Gasâ€Separation Membranes. Angewandte Chemie - International Edition, 2016, 55, 1998-2001.	7.2	105
80	Scalable simultaneous activation and separation of metal–organic frameworks. RSC Advances, 2016, 6, 5523-5527.	1.7	14
81	Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes. Desalination, 2016, 377, 128-137.	4.0	62
82	Tunable Photodynamic Switching of DArE@PAFâ€1 for Carbon Capture. Advanced Functional Materials, 2015, 25, 4405-4411.	7.8	48
83	Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. ChemSusChem, 2015, 8, 2789-2825.	3.6	302
84	Gasâ€ S eparation Membranes Loaded with Porous Aromatic Frameworks that Improve with Age. Angewandte Chemie, 2015, 127, 2707-2711.	1.6	33
85	Continuous flow production of metal-organic frameworks. Current Opinion in Chemical Engineering, 2015, 8, 55-59.	3.8	65
86	Visible Light-Triggered Capture and Release of CO ₂ from Stable Metal Organic Frameworks. Chemistry of Materials, 2015, 27, 7882-7888.	3.2	54
87	A low temperature reduction of CCl4 to solid and hollow carbon nanospheres using metallic sodium. Materials Chemistry and Physics, 2015, 154, 38-43.	2.0	6
88	Gasâ€ 5 eparation Membranes Loaded with Porous Aromatic Frameworks that Improve with Age. Angewandte Chemie - International Edition, 2015, 54, 2669-2673.	7.2	175
89	Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes. Scientific Reports, 2015, 5, 7823.	1.6	168
90	Tailoring Physical Aging in Super Classy Polymers with Functionalized Porous Aromatic Frameworks for CO ₂ Capture. Chemistry of Materials, 2015, 27, 4756-4762.	3.2	107

#	Article	IF	CITATIONS
91	Continuous flow synthesis of a carbon-based molecular cage macrocycle via a three-fold homocoupling reaction. Chemical Communications, 2015, 51, 14231-14234.	2.2	29
92	Porous Aromatic Frameworks Impregnated with Lithiated Fullerenes for Natural Gas Purification. Journal of Physical Chemistry C, 2015, 119, 9347-9354.	1.5	17
93	Molecular Design of Amorphous Porous Organic Cages for Enhanced Gas Storage. Journal of Physical Chemistry C, 2015, 119, 7746-7754.	1.5	44
94	AIMs: a new strategy to control physical aging and gas transport in mixed-matrix membranes. Journal of Materials Chemistry A, 2015, 3, 15241-15247.	5.2	72
95	Selective sensing of alcohols in water influenced by chemically Zeolite coatings on optical fiber sensors. Proceedings of SPIE, 2014, , .	0.8	1
96	Ending Aging in Super Glassy Polymer Membranes. Angewandte Chemie - International Edition, 2014, 53, 5322-5326.	7.2	275
97	Porous Aromatic Frameworks Impregnated with Fullerenes for Enhanced Methanol/Water Separation. Langmuir, 2014, 30, 14621-14630.	1.6	12
98	Does functionalisation enhance CO ₂ uptake in interpenetrated MOFs? An examination of the IRMOF-9 series. Chemical Communications, 2014, 50, 3238-3241.	2.2	57
99	The carbon sponge: squeezing out captured carbon dioxide. Carbon Management, 2014, 5, 9-11.	1.2	3
100	Ultramicroporous MOF with High Concentration of Vacant Cu ^{II} Sites. Chemistry of Materials, 2014, 26, 4640-4646.	3.2	29
101	Feasibility of Mixed Matrix Membrane Gas Separations Employing Porous Organic Cages. Journal of Physical Chemistry C, 2014, 118, 1523-1529.	1.5	84
102	A new family of zinc metal–organic framework polymorphs containing anthracene tetracarboxylates. CrystEngComm, 2014, 16, 8937-8940.	1.3	14
103	Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks. Scientific Reports, 2014, 4, 5443.	1.6	150
104	Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes. Journal of Materials Chemistry A, 2013, 1, 9208.	5.2	83
105	Programmed Pore Architectures in Modular Quaternary Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 17731-17734.	6.6	170
106	Analytical representation of micropores for predicting gas adsorption in porous materials. Microporous and Mesoporous Materials, 2013, 167, 188-197.	2.2	17
107	Dynamic Photo‣witching in Metal–Organic Frameworks as a Route to Lowâ€Energy Carbon Dioxide Capture and Release. Angewandte Chemie - International Edition, 2013, 52, 3695-3698.	7.2	309
108	Kinetically Controlled Porosity in a Robust Organic Cage Material. Angewandte Chemie - International Edition, 2013, 52, 3746-3749.	7.2	137

#	Article	IF	CITATIONS
109	A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. Chemical Communications, 2013, 49, 3634.	2.2	201
110	Post-synthetic Structural Processing in a Metal–Organic Framework Material as a Mechanism for Exceptional CO ₂ /N ₂ Selectivity. Journal of the American Chemical Society, 2013, 135, 10441-10448.	6.6	190
111	Coordination polymers of sulphur-donor ligands. Inorganica Chimica Acta, 2013, 403, 9-24.	1.2	69
112	High Performance Hydrogen Storage from Be-BTB Metal–Organic Framework at Room Temperature. Langmuir, 2013, 29, 8524-8533.	1.6	41
113	Strategies toward Enhanced Low-Pressure Volumetric Hydrogen Storage in Nanoporous Cryoadsorbents. Langmuir, 2013, 29, 15689-15697.	1.6	11
114	Simple Metal-catalyst-free Production of Carbon Nanostructures. Australian Journal of Chemistry, 2013, 66, 1435.	0.5	5
115	Spatial Control of Zeolitic Imidazolate Framework Growth on Flexible Substrates. Crystal Growth and Design, 2013, 13, 4411-4417.	1.4	16
116	Adsorption and desorption characteristics of 3-dimensional networks of fused graphene. Surface Science, 2012, 606, 34-39.	0.8	14
117	Control of framework interpenetration for in situ modified hydroxyl functionalised IRMOFs. Chemical Communications, 2012, 48, 10328.	2.2	64
118	Synthesis, characterisation and adsorption properties of a porous copper(ii) 3D coordination polymer exhibiting strong binding enthalpy and adsorption capacity for carbon dioxide. Dalton Transactions, 2012, 41, 13364.	1.6	3
119	A simple route to full structural analysis of biophosphates and their application to materials discovery. Dalton Transactions, 2012, 41, 5497.	1.6	5
120	Activation of gold decorated carbon nanotube hybrids for targeted gas adsorption and enhanced catalytic oxidation. Journal of Materials Chemistry, 2012, 22, 9374.	6.7	30
121	Feasibility of zeolitic imidazolate framework membranes for clean energy applications. Energy and Environmental Science, 2012, 5, 7637.	15.6	154
122	MFI-type zeolite functional liquid phase sensor coated on the optical fiber end-face. Proceedings of SPIE, 2012, , .	0.8	0
123	Aqueous Molecular Sieving and Strong Gas Adsorption in Highly Porous MOFs with a Facile Synthesis. Chemistry of Materials, 2012, 24, 4647-4652.	3.2	49
124	Hysteretic carbon dioxide sorption in a novel copper(ii)-indazole-carboxylate porous coordination polymer. Chemical Communications, 2012, 48, 11558.	2.2	39
125	Top-down patterning of Zeolitic Imidazolate Framework composite thin films by deep X-ray lithography. Chemical Communications, 2012, 48, 7483.	2.2	51
126	Methane storage in metal organic frameworks. Journal of Materials Chemistry, 2012, 22, 16698.	6.7	153

#	Article	IF	CITATIONS
127	Lithiated Porous Aromatic Frameworks with Exceptional Gas Storage Capacity. Angewandte Chemie - International Edition, 2012, 51, 6639-6642.	7.2	112
128	A flexible copper based microporous metal–organic framework displaying selective adsorption of hydrogen over nitrogen. Dalton Transactions, 2011, 40, 3398.	1.6	22
129	High surface area templated LiFePO ₄ from a single source precursor molecule. Energy and Environmental Science, 2011, 4, 965-972.	15.6	32
130	Role of ethanol in sodalite crystallization in an ethanol–Na2O–Al2O3–SiO2–H2O system. CrystEngComm, 2011, 13, 4714.	1.3	28
131	Disordered Mesoporous Gadolinosilicate Nanoparticles Prepared Using Gadolinium Based Ionic Liquid Emulsions: Potential as Magnetic Resonance Imaging Contrast Agents. Australian Journal of Chemistry, 2011, 64, 617.	0.5	15
132	PLUXter: Rapid Discovery of Metal-Organic Framework Structures Using PCA and HCA of High Throughput Synchrotron Powder Diffraction Data. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 28-35.	0.6	12
133	Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes. Membranes, 2011, 1, 25-36.	1.4	42
134	Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes. Microporous and Mesoporous Materials, 2010, 127, 167-175.	2.2	146
135	Metal organic frameworks with exceptional gas storage capacity. , 2010, , .		0
136	Periodic mesoporous Lix(Mn1/3Ni1/3Co1/3)O2 spinel. Dalton Transactions, 2010, 39, 5306.	1.6	6
137	Vacancy ordering in γ-Fe2O3 nanocrystals observed by 57Fe NMR. Journal of Magnetism and Magnetic Materials, 2009, 321, 2677-2681.	1.0	32
138	Synthesis and Hydrogen Storage Properties of Be ₁₂ (OH) ₁₂ (1,3,5-benzenetribenzoate) ₄ . Journal of the American Chemical Society, 2009, 131, 15120-15121.	6.6	247
139	Internal and external surface characterisation of templating processes for ordered mesoporous silicas and carbons. Journal of Materials Chemistry, 2009, 19, 2215.	6.7	14
140	Metalâ^'Organic Frameworks Impregnated with Magnesium-Decorated Fullerenes for Methane and Hydrogen Storage. Journal of the American Chemical Society, 2009, 131, 10662-10669.	6.6	134
141	Synthesis and Isomerisation Reactions of Tetranuclear and Octanuclear (Carbamato)zinc Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 2024-2032.	1.0	13
142	Synthesis and properties of Zn–Mg heterobimetallic carbamates. Crystal structures of the first reported single source precursors for ZnxMg1â^'xO thin films. Dalton Transactions, 2008, , 2751.	1.6	21
143	High-Quality Zn _{<i>x</i>} Mg _{1â^'<i>x</i>} O Thin Films Deposited from a Single Molecular Source. Intimate Mixing as a Means to Improved Film Properties. Chemistry of Materials, 2008, 20, 2461-2467.	3.2	16
144	Integrated Study of the Calcination Cycle from Gibbsite to Corundum. Chemistry of Materials, 2007, 19, 2877-2883.	3.2	47

Matthew Hill

#	Article	IF	CITATIONS
145	Novel monomeric barium complexes as volatile precursors for chemical vapour deposition. Polyhedron, 2007, 26, 493-507.	1.0	6
146	Growth Mechanism of Textured MgO Thin Films via SSCVD. Journal of Physical Chemistry B, 2006, 110, 9236-9240.	1.2	8
147	Towards new precursors for ZnO thin films by single source CVD: the X-ray structures and precursor properties of zinc ketoacidoximates. Inorganica Chimica Acta, 2005, 358, 201-206.	1.2	28
148	Dialkylcarbamato magnesium cluster complexes: precursors to the single-source chemical vapour deposition of high quality MgO thin films. Journal of Materials Chemistry, 2004, 14, 3198.	6.7	24