Leobardo Serrano-CarreÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1867128/publications.pdf

Version: 2024-02-01

759055 752573 20 499 12 20 citations g-index h-index papers 20 20 20 639 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Oxygen transfer and bubble sizes occurring in a pilotâ \in scale cultivation of <i>Bacillus velezensis</i> for the production of poly(<i>\hat{I}^3</i> â \in glutamic acid) under two schemes of power drawn. Journal of Chemical Technology and Biotechnology, 2022, 97, 1684-1694.	1.6	3
2	Bacillus velezensis 83 increases productivity and quality of tomato (Solanum lycopersicum L.): Pre and postharvest assessment. Current Research in Microbial Sciences, 2021, 2, 100076.	1.4	15
3	Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion. AMB Express, 2020, 10, 163.	1.4	37
4	Oxygen transfer rate determines molecular weight and production of <scp>poly(</scp> <i>γ</i> â€ <scp>glutamic</scp> acid) as well as carbon utilization by <i>Bacillus velezensis</i> 83. Journal of Chemical Technology and Biotechnology, 2020, 95, 2383-2392.	1.6	8
5	Strategies based on aqueous two-phase systems for the separation of laccase from protease produced by Pleurotus ostreatus. Fluid Phase Equilibria, 2019, 502, 112281.	1.4	7
6	Glucose limitation and glucose uptake rate determines metabolite production and sporulation in high cell density continuous cultures of Bacillus amyloliquefaciens 83. Journal of Biotechnology, 2019, 299, 57-65.	1.9	12
7	Elicitation and biotransformation of 6-pentyl-α-pyrone in Trichoderma atroviride cultures. Process Biochemistry, 2019, 82, 68-74.	1.8	6
8	Effects of bacillomycin D homologues produced by Bacillus amyloliquefaciens 83 on growth and viability of Colletotrichum gloeosporioides at different physiological stages. Biological Control, 2018, 127, 145-154.	1.4	29
9	Diffusional and transcriptional mechanisms involved in laccases production by Pleurotus ostreatus CP50. Journal of Biotechnology, 2016, 223, 42-49.	1.9	8
10	Impact of Meyerozyma guilliermondii isolated from chickens against Eimeria sp. protozoan, an in vitro analysis. BMC Veterinary Research, $2015,11,278.$	0.7	11
11	Toward an understanding of the effects of agitation and aeration on growth and laccases production by Pleurotus ostreatus. Journal of Biotechnology, 2014, 177, 67-73.	1.9	25
12	The challenges of introducing a new biofungicide to the market: A case study. Electronic Journal of Biotechnology, $2013, 16, .$	1.2	26
13	Increasing Pleurotus ostreatus laccase production by culture medium optimization and copper/lignin synergistic induction. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 531-540.	1.4	49
14	The influence of circulation frequency on fungal morphology: A case study considering Kolmogorov microscale in constant specific energy dissipation rate cultures of Trichoderma harzianum. Journal of Biotechnology, 2007, 130, 394-401.	1.9	17
15	From shake flasks to stirred fermentors: Scale-up of an extractive fermentation process for 6-pentyl-1±-pyrone production by Trichoderma harzianum using volumetric power input. Process Biochemistry, 2006, 41, 1347-1352.	1.8	46
16	6-pentyl-α-pyrone production byTrichoderma harzianum: The influence of energy dissipation rate and its implications on fungal physiology. Biotechnology and Bioengineering, 2005, 91, 54-61.	1.7	35
17	Rhizoctonia solani, an elicitor of 6-pentyl-α-pyrone production by Trichoderma harzianum in a two liquid phases, extractive fermentation system. Biotechnology Letters, 2004, 26, 1403-1406.	1.1	31
18	Production of 6-pentyl-α-pyrone by Trichoderma harzianum cultured in unbaffled and baffled shake flasks. Biochemical Engineering Journal, 2004, 18, 1-8.	1.8	85

#	Article	IF	CITATIONS
19	Accurate and rapid viability assessment of Trichoderma harzianumusing fluorescence-based digital image analysis. Biotechnology and Bioengineering, 2002, 80, 677-684.	1.7	20
20	The potential application of aqueous two-phase systems for in situ recovery of 6-pentyl-â^ž-pyrone produced by Trichoderma harzianum. Enzyme and Microbial Technology, 2001, 28, 625-631.	1.6	29