Reza Sharif-Naeini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1867044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomic and Transcriptomic Techniques to Decipher the Molecular Evolution of Venoms. Toxins, 2021, 13, 154.	3.4	11
2	Mechanosensitive ion channels contribute to mechanically evoked rapid leaflet movement in <i>Mimosa pudica</i> . Plant Physiology, 2021, 187, 1704-1712.	4.8	13
3	Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. Journal of Experimental Medicine, 2020, 217, .	8.5	61
4	Loss of SLC9A6/NHE6 impairs nociception in a mouse model of Christianson syndrome. Pain, 2020, 161, 2619-2628.	4.2	10
5	Role of mechanosensitive ion channels in the sensation of pain. Journal of Neural Transmission, 2020, 127, 407-414.	2.8	5
6	TRESK is a modalityâ€specific brake on nociceptor excitability. Journal of Physiology, 2020, 598, 1423-1424.	2.9	1
7	TACAN Is an Ion Channel Involved in Sensing Mechanical Pain. Cell, 2020, 180, 956-967.e17.	28.9	120
8	Recruitment of Spinoparabrachial Neurons by Dorsal Horn Calretinin Neurons. Cell Reports, 2019, 28, 1429-1438.e4.	6.4	40
9	Bursting Enables GRP Neurons to Engage Spinal Itch Circuits. Neuron, 2019, 103, 5-7.	8.1	3
10	Lionfish venom elicits pain predominantly through the activation of nonpeptidergic nociceptors. Pain, 2018, 159, 2255-2266.	4.2	11
11	A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. Neuron, 2017, 93, 822-839.e6.	8.1	250
12	A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nature Communications, 2017, 8, 1009.	12.8	70
13	Mechanosensitive ion channels in articular nociceptors driveÂmechanical allodynia in osteoarthritis. Osteoarthritis and Cartilage, 2017, 25, 2091-2099.	1.3	32
14	Dynamic regulation of TREK1 gating by Polycystin 2 via a Filamin A-mediated cytoskeletal Mechanism. Scientific Reports, 2017, 7, 17403.	3.3	16
15	eIF2α phosphorylation controls thermal nociception. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11949-11954.	7.1	37
16	Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury. Cell Reports, 2015, 13, 1246-1257.	6.4	248
17	Differential Regulation of 6- and 7-Transmembrane Helix Variants of μ-Opioid Receptor in Response to Morphine Stimulation. PLoS ONE, 2015, 10, e0142826.	2.5	14
18	Primary Afferent and Spinal Cord Expression of Gastrin-Releasing Peptide: Message, Protein, and Antibody Concerns. Journal of Neuroscience, 2015, 35, 648-657.	3.6	83

REZA SHARIF-NAEINI

#	Article	IF	CITATIONS
19	Contribution of Mechanosensitive Ion Channels to Somatosensation. Progress in Molecular Biology and Translational Science, 2015, 131, 53-71.	1.7	15
20	Forebrain GABAergic Neuron Precursors Integrate into Adult Spinal Cord and Reduce Injury-Induced Neuropathic Pain. Neuron, 2012, 74, 663-675.	8.1	190
21	Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K2P Channels. Cell Reports, 2012, 1, 241-250.	6.4	54
22	A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature, 2011, 479, 410-414.	27.8	295
23	Osmotic and thermal control of magnocellular neurosecretory neurons – role of an Nâ€ŧerminal variant of <i>trpv1</i> . European Journal of Neuroscience, 2010, 32, 2022-2030.	2.6	54
24	Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. Journal of Molecular and Cellular Cardiology, 2010, 48, 83-89.	1.9	68
25	The mechano-gated K2P channel TREK-1. European Biophysics Journal, 2009, 38, 293-303.	2.2	85
26	Polycystin-1 and -2 Dosage Regulates Pressure Sensing. Cell, 2009, 139, 587-596.	28.9	299
27	TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Archiv European Journal of Physiology, 2008, 456, 529-540.	2.8	86
28	Molecular basis of the mammalian pressure-sensitive ion channels: Focus on vascular mechanotransduction. Progress in Biophysics and Molecular Biology, 2008, 97, 180-195.	2.9	54
29	TRPV1 Gene Required for Thermosensory Transduction and Anticipatory Secretion from Vasopressin Neurons during Hyperthermia. Neuron, 2008, 58, 179-185.	8.1	76
30	Neurophysiology of supraoptic neurons in C57/BL mice studied in three acute in vitro preparations. Progress in Brain Research, 2008, 170, 229-242.	1.4	10
31	Actin Filaments Mediate Mechanical Gating during Osmosensory Transduction in Rat Supraoptic Nucleus Neurons. Journal of Neuroscience, 2007, 27, 4008-4013.	3.6	64
32	Neurophysiological characterization of mammalian osmosensitive neurones. Experimental Physiology, 2007, 92, 499-505.	2.0	48
33	An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nature Neuroscience, 2006, 9, 93-98.	14.8	283
34	Remodelling of spinal nociceptive mechanisms in an animal model of monoarthritis. European Journal of Neuroscience, 2005, 22, 2005-2015.	2.6	34