

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1866092/publications.pdf Version: 2024-02-01

YI XII

#	Article	IF	CITATIONS
1	Simulation of Martian Near-Surface Structure and Imaging of Future GPR Data From Mars. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	2.7	12
2	A Recalibration Model Based on the Statistical Regression Analysis Method to Align the Microwave Data of Chang'E-1 and Chang'E-2. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	2.7	1
3	SHARAD Observations of Temporal Variations of CO2 Ice Deposits at the South Pole of Mars. Remote Sensing, 2022, 14, 435.	1.8	1
4	Characteristics of Dust Devils in Two Pre-Selected Landing Regions of the Tianwen-1 Mission—Comparing Observations and Predictions Using Numerical Model. Remote Sensing, 2022, 14, 2117.	1.8	0
5	Calculation of dielectric constant, loss property and scattering characteristics from the future martian GPR data. Icarus, 2022, 386, 115181.	1.1	2
6	Rock abundance and evolution of the shallow stratum on Chang'e-4 landing site unveiled by lunar penetrating radar data. Earth and Planetary Science Letters, 2021, 564, 116912.	1.8	22
7	Analysis of plume–lunar surface interaction and soil erosion during the Chang'E-4 landing process. Acta Astronautica, 2021, 185, 337-351.	1.7	14
8	A Complex Paleo‧urface Revealed by the Yutuâ€2 Rover at the Lunar Farside. Geophysical Research Letters, 2021, 48, e2021GL095133.	1.5	9
9	Dielectric Properties of Lunar Materials at the Chang'e-4 Landing Site. Remote Sensing, 2021, 13, 4056.	1.8	8
10	Comparitive Study of the Geomorphological Characteristics of Valley Networks between Mars and the Qaidam Basin. Remote Sensing, 2021, 13, 4471.	1.8	3
11	Ground-penetrating radar measurements of subsurface structures of lacustrine sediments in the Qaidam Basin (NW China): Possible implications for future in-situ radar experiments on Mars. Icarus, 2020, 338, 113576.	1.1	4
12	Diverse Polygonal Patterned Grounds in the Northern Eridania Basin, Mars: Possible Origins and Implications. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006647.	1.5	5
13	The Global Search for Liquid Water on Mars from Orbit: Current and Future Perspectives. Life, 2020, 10, 120.	1.1	16
14	Permittivity Estimation of Subsurface Deposits in the Elysium–Utopia Region on Mars with MRO Shallow Radar Sounder Data. Astronomical Journal, 2020, 159, 156.	1.9	9
15	First look by the Yutu-2 rover at the deep subsurface structure at the lunar farside. Nature Communications, 2020, 11, 3426.	5.8	47
16	Stratigraphy of the Von KÃirmÃin Crater Based on Chang'Eâ€4 Lunar Penetrating Radar Data. Geophysical Research Letters, 2020, 47, e2020GL088680.	1.5	34
17	The Subsurface Structure on the CE-3 Landing Site: LPR CH-1 Data Processing by Shearlet Transform. Pure and Applied Geophysics, 2020, 177, 3459-3474.	0.8	6
18	Weak Dust Activity Near a Geologically Young Surface Revealed by Chang'Eâ€3 Mission. Geophysical Research Letters, 2019, 46, 9405-9413.	1.5	15

Yı Xu

#	Article	IF	CITATIONS
19	Comparison of Dielectric Properties and Structure of Lunar Regolith at Chang'eâ€3 and Chang'eâ€4 Landing Sites Revealed by Groundâ€Penetrating Radar. Geophysical Research Letters, 2019, 46, 12783-12793.	1.5	77
20	Study of Chang'E-2 Microwave Radiometer Data in the Lunar Polar Region. Advances in Astronomy, 2019, 2019, 1-10.	0.5	10
21	Comparative study between rivers in Tarim Basin in northwest China and Evros Vallis on Mars. Icarus, 2019, 328, 127-140.	1.1	6
22	A Process-Variation-Tolerant Method for Nanophotonic On-Chip Network. ACM Journal on Emerging Technologies in Computing Systems, 2018, 14, 1-23.	1.8	0
23	The Polygonal Surface Structures in the Dalangtan Playa, Qaidam Basin, NW China: Controlling Factors for Their Formation and Implications for Analogous Martian Landforms. Journal of Geophysical Research E: Planets, 2018, 123, 1910-1933.	1.5	17
24	Geological Features and Evolution of Yardangs in the Qaidam Basin, Tibetan Plateau (NW China): A Terrestrial Analogue for Mars. Journal of Geophysical Research E: Planets, 2018, 123, 2336-2364.	1.5	23
25	Bacterial and Archaeal Lipids Recovered from Subsurface Evaporites of Dalangtan Playa on the Tibetan Plateau and Their Astrobiological Implications. Astrobiology, 2017, 17, 1112-1122.	1.5	15
26	Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals. Advances in Space Research, 2017, 60, 2099-2107.	1.2	8
27	A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Science Reviews, 2017, 164, 84-101.	4.0	76
28	Structural analysis of lunar subsurface with Chang׳E-3 lunar penetrating radar. Planetary and Space Science, 2016, 120, 96-102.	0.9	54
29	BandArb. , 2015, , .		6
30	Inversion of lunar regolith layer thickness with CELMS data using BPNN method. Planetary and Space Science, 2014, 101, 1-11.	0.9	28
31	A composite and scalable cache coherence protocol for large scale CMPs. , 2011, , .		28