
Serafino Cicerone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1865813/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Cardinal directions between spatial objects: the pairwise-consistency problem. Information Sciences, 2004, 164, 165-188.	6.9	59
2	Asynchronous Arbitrary Pattern Formation: the effects of a rigorous approach. Distributed Computing, 2019, 32, 91-132.	0.8	38
3	Recoverable Robustness in Shunting and Timetabling. Lecture Notes in Computer Science, 2009, , 28-60.	1.3	35
4	Gathering of robots on meeting-points: feasibility and optimal resolution algorithms. Distributed Computing, 2018, 31, 1-50.	0.8	31
5	A fully dynamic algorithm for distributed shortest paths. Theoretical Computer Science, 2003, 297, 83-102.	0.9	30
6	Recoverable robust timetabling for single delay: Complexity and polynomial algorithms for special cases. Journal of Combinatorial Optimization, 2009, 18, 229-257.	1.3	30
7	Embedded pattern formation by asynchronous robots without chirality. Distributed Computing, 2019, 32, 291-315.	0.8	24
8	On the extension of bipartite to parity graphs. Discrete Applied Mathematics, 1999, 95, 181-195.	0.9	21
9	Dynamic Multi-level Overlay Graphs for Shortest Paths. Mathematics in Computer Science, 2008, 1, 709-736.	0.4	21
10	Graph classes between parity and distance-hereditary graphs. Discrete Applied Mathematics, 1999, 95, 197-216.	0.9	18
11	Multi-stage recovery robustness for optimization problems: A new concept for planning under disturbances. Information Sciences, 2012, 190, 107-126.	6.9	18
12	Cardinal relations between regions with a broad boundary. , 2000, , .		14
13	Graphs with bounded induced distance. Discrete Applied Mathematics, 2001, 108, 3-21.	0.9	14
14	Partially dynamic efficient algorithms for distributed shortest paths. Theoretical Computer Science, 2010, 411, 1013-1037.	0.9	14
15	A structured methodology for designing distributed algorithms for mobile entities. Information Sciences, 2021, 574, 111-132.	6.9	12
16	A uniform approach to semi-dynamic problems on digraphs. Theoretical Computer Science, 1998, 203, 69-90.	0.9	11
17	Compact-Port Routing Models and Applications to Distance-Hereditary Graphs. Journal of Parallel and Distributed Computing, 2001, 61, 1472-1488.	4.1	11
18	Asynchronous Robots on Graphs: Gathering. Lecture Notes in Computer Science, 2019, , 184-217.	1.3	11

SERAFINO CICERONE

#	Article	lF	CITATIONS
19	Gathering robots in graphs: The central role of synchronicity. Theoretical Computer Science, 2021, 849, 99-120.	0.9	10
20	MinMax-Distance Gathering on Given Meeting Points. Lecture Notes in Computer Science, 2015, , 127-139.	1.3	10
21	Delay Management Problem: Complexity Results and Robust Algorithms. Lecture Notes in Computer Science, 2008, , 458-468.	1.3	10
22	Solving the Pattern Formation by Mobile Robots With Chirality. IEEE Access, 2021, 9, 88177-88204.	4.2	9
23	(k,+)-distance-hereditary graphs. Journal of Discrete Algorithms, 2003, 1, 281-302.	0.7	8
24	Networks with small stretch number. Journal of Discrete Algorithms, 2004, 2, 383-405.	0.7	8
25	"Semi-Asynchronous†A New Scheduler in Distributed Computing. IEEE Access, 2021, 9, 41540-41557.	4.2	8
26	Fast and Simple Approach for Polygon Schematization. Lecture Notes in Computer Science, 2012, , 267-279.	1.3	8
27	Minimum-Traveled-Distance Gathering of Oblivious Robots over Given Meeting Points. Lecture Notes in Computer Science, 2015, , 57-72.	1.3	8
28	Arbitrary Pattern Formation on Infinite Regular Tessellation Graphs. , 2021, , .		8
29	Engineering a New Algorithm for Distributed Shortest Paths on Dynamic Networks. Algorithmica, 2013, 66, 51-86.	1.3	6
30	Asynchronous Embedded Pattern Formation Without Orientation. Lecture Notes in Computer Science, 2016, , 85-98.	1.3	6
31	Partially Dynamic Algorithms for Distributed Shortest Paths and their Experimental Evaluation. Journal of Computers, 2007, 2, .	0.4	6
32	Efficient Estimation of Qualitative Topological Relations based on the Weighted Walkthroughs Model. GeoInformatica, 2003, 7, 211-227.	2.7	5
33	A New Fully Dynamic Algorithm for Distributed Shortest Paths and Its Experimental Evaluation. Lecture Notes in Computer Science, 2010, , 59-70.	1.3	5
34	A general strategy for decomposing topological invariants of spatial databases and an application. Data and Knowledge Engineering, 2002, 42, 57-87.	3.4	4
35	"Semi-Asynchronous": A New Scheduler for Robot Based Computing Systems. , 2018, , .		4
36	Graphs with Bounded Induced Distance. Lecture Notes in Computer Science, 1998, , 177-191.	1.3	4

SERAFINO CICERONE

#	Article	IF	CITATIONS
37	Gathering Synchronous Robots in Graphs: From General Properties to Dense and Symmetric Topologies. Lecture Notes in Computer Science, 2019, , 170-184.	1.3	4
38	Self-spanner graphs. Discrete Applied Mathematics, 2005, 150, 99-120.	0.9	3
39	Characterizations of Graphs with Stretch Number less than 2. Electronic Notes in Discrete Mathematics, 2011, 37, 375-380.	0.4	3
40	Approximation algorithms for decomposing octilinear polygons. Theoretical Computer Science, 2019, 779, 17-36.	0.9	3
41	On the equivalence in complexity among basic problems on bipartite and parity graphs. Lecture Notes in Computer Science, 1997, , 354-363.	1.3	3
42	On Gathering of Semi-synchronous Robots in Graphs. Lecture Notes in Computer Science, 2019, , 84-98.	1.3	3
43	On the complexity of specification morphisms. Theoretical Computer Science, 1997, 189, 239-248.	0.9	2
44	Static and dynamic low-congested interval routing schemes. Lecture Notes in Computer Science, 1998, , 592-603.	1.3	2
45	Partially Dynamic Concurrent Update of Distributed Shortest Paths. , 2007, , .		2
46	Cavities' Identification Algorithm for Power Integrity Analysis of Complex Boards. , 2009, , .		2
47	A Quasi-Hole Detection Algorithm for Recognizing k-Distance-Hereditary Graphs, with k < 2. Algorithms, 2021, 14, 105.	2.1	2
48	(k+) -Disatance- Herediatry Graphs. Lecture Notes in Computer Science, 2001, , 66-77.	1.3	2
49	Fair Hitting Sequence Problem: Scheduling Activities with Varied Frequency Requirements. Lecture Notes in Computer Science, 2019, , 174-186.	1.3	2
50	Decomposing spatial databases and applications. , 0, , .		1
51	Interacting with geographic databases: a focus+context approach. , 0, , .		1
52	Static and dynamic low-congested interval routing schemes. Theoretical Computer Science, 2002, 276, 315-354.	0.9	1
53	Getting new algorithmic results by extending distance-hereditary graphs via split composition. PeerJ Computer Science, 2021, 7, e627.	4.5	1
54	A Fully Dynamic Algorithm for Distributed Shortest Paths. Lecture Notes in Computer Science, 2000, , 247-257.	1.3	1

SERAFINO CICERONE

#	Article	IF	CITATIONS
55	Extraction of qualitative information from the weighted walkthroughs. , 2002, , .		1
56	Breaking Symmetries on Tessellation Graphs via Asynchronous Robots: The Line Formation Problem as a Case Study. IEEE Access, 2021, 9, 147855-147873.	4.2	1
57	Low-congested interval routing schemes for hypercubelike networks. Networks, 2000, 36, 191-201.	2.7	0
58	Supporting a focus+context interaction style for spatial databases. , 0, , .		0
59	Gathering a Swarm of Robots Through Shortest Paths. Emergence, Complexity and Computation, 2018, , 27-72.	0.3	Ο
60	Special Issue on "Graph Algorithms and Applications― Algorithms, 2021, 14, 150.	2.1	0
61	On the effectiveness of the genetic paradigm for polygonization. Information Processing Letters, 2021, 171, 106134.	0.6	Ο
62	Combining Polygon Schematization and Decomposition Approaches for Solving the Cavity Decomposition Problem. ACM Transactions on Spatial Algorithms and Systems, 2021, 7, 1-37.	1.4	0
63	Decomposing Octilinear Polygons into Triangles and Rectangles. Lecture Notes in Computer Science, 2014, , 18-30.	1.3	Ο
64	Counting edges in a dag. Lecture Notes in Computer Science, 1997, , 85-100.	1.3	0
65	Asynchronous Rendezvous with Different Maps. Lecture Notes in Computer Science, 2019, , 154-169.	1.3	0