
Kouichi Ohe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1865793/publications.pdf Version: 2024-02-01

Коллені Онг

#	Article	lF	CITATIONS
1	Ruthenium-Catalyzed Cyclopropanation of Alkenes Using Propargylic Carboxylates as Precursors of Vinylcarbenoids. Journal of Organic Chemistry, 2003, 68, 8505-8513.	1.7	247
2	Novel Approach for Catalytic Cyclopropanation of Alkenes via (2-Furyl)carbene Complexes from 1-Benzoyl-cis-1-buten-3-yne. Journal of the American Chemical Society, 2002, 124, 5260-5261.	6.6	162
3	A new ruthenium-catalyzed cyclopropanation of alkenes using propargylic acetates as a precursor of vinylcarbenoids. Tetrahedron Letters, 2003, 44, 2019-2022.	0.7	126
4	Enantioselective ortho-Lithiation of Substituted Ferrocenes. Journal of Organic Chemistry, 1996, 61, 1172-1174.	1.7	106
5	Palladiumâ€Catalyzed Decarboxylative Intramolecular Aziridination from 4 <i>H</i> â€Isoxazolâ€5â€ones Leading to 1â€Azabicyclo[3.1.0]hexâ€2â€enes. Angewandte Chemie - International Edition, 2011, 50, 11470-114	47 ⁷ 3 ²	106
6	Palladium(II)-catalyzed oxidation of terminal alkenes to methyl ketones using molecular oxygen. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1915-1918.	1.3	101
7	Transition Metal-catalyzed Reactions Using Alkynes as Precursors of Carbene and Vinylidene Complexes. Chemistry Letters, 2005, 34, 1068-1073.	0.7	101
8	Recent Progress on Cyclic Nitrenoid Precursors in Transitionâ€Metalâ€Catalyzed Nitreneâ€Transfer Reactions. Chemistry - A European Journal, 2019, 25, 3156-3180.	1.7	98
9	Catalytic Cyclopropanation of Alkenes via (2-Furyl)carbene Complexes from 1-Benzoyl-cis-1-buten-3-yne with Transition Metal Compounds. Journal of Organic Chemistry, 2004, 69, 1557-1564.	1.7	86
10	A Novel Amphiphilic Chiral Ligand Derived fromd-Glucosamine. Application to Palladium-Catalyzed Asymmetric Allylic Substitution Reaction in an Aqueous or an Organic Medium, Allowing for Catalyst Recycling. Journal of Organic Chemistry, 2000, 65, 5197-5201.	1.7	79
11	Gallium (<scp>iii</scp>)-catalysed bromocyanation of alkynes: regio- and stereoselective synthesis of β-bromo-α,β-unsaturated nitriles. Chemical Communications, 2011, 47, 2375-2377.	2.2	78
12	Rhodium(I)-Catalyzed Cycloaromatization of Acyclic 3-Ene-1,5-diynes. Angewandte Chemie International Edition in English, 1996, 35, 1823-1825.	4.4	73
13	Highâ€Contrast Fluorescence Imaging of Tumors Inâ€Vivo Using Nanoparticles of Amphiphilic Brushâ€Like Copolymers Produced by ROMP. Angewandte Chemie - International Edition, 2011, 50, 6567-6570.	7.2	73
14	Palladium-catalyzed reaction of 5-methylene-1,3-dioxolan-2-ones. A new access to and reactivity of oxatrimethylenemethane-palladium. Journal of Organic Chemistry, 1993, 58, 1173-1177.	1.7	70
15	Chromium- and Tungsten-Triggered Valence Isomerism of cis-1-Acyl-2-ethynylcyclopropanes via [3,3]Sigmatropy of (2-Acylcyclopropyl)vinylideneâ^'Metal Intermediates. Journal of the American Chemical Society, 2002, 124, 526-527.	6.6	70
16	Synthesis of 2 <i>H</i> â€Azirines by Iridiumâ€Catalyzed Decarboxylative Ring Contraction of Isoxazolâ€5(4 <i>H</i>)â€ones. Angewandte Chemie - International Edition, 2016, 55, 7199-7202.	7.2	68
17	Novel Pyranylidene Complexes from Group 6 Transition Metals and β-Ethynyl α,β-Unsaturated Carbonyl Compounds. Organometallics, 2000, 19, 5525-5528.	1.1	62
18	Ruthenium-Catalyzed [1,n]-Metallotropic Shift (n= 3, 5) of Alkynyl Carbene Complex Intermediates. Journal of the American Chemical Society, 2006, 128, 9270-9271.	6.6	62

#	Article	IF	CITATIONS
19	Practical synthesis of aromatic nitriles via gallium-catalysed electrophilic cyanation of aromatic C–H bonds. Chemical Communications, 2012, 48, 3127.	2.2	62
20	Synthesis of 2-pyranylidene or (2-furyl)carbene–chromium complexes from conjugated enyne carbonyl compounds with Cr(CO)5(THF). Journal of Organometallic Chemistry, 2002, 645, 228-234.	0.8	60
21	Palladiumâ€Catalyzed Azaâ€Wittigâ€Type Condensation of Isoxazolâ€5(4 <i>H</i>)â€ones with Aldehydes. Chemistry - A European Journal, 2014, 20, 1490-1494.	1.7	59
22	Ring-opening metathesis polymerization-based synthesis of polymeric nanoparticles for enhanced tumor imaging in vivo: Synergistic effect of folate-receptor targeting and PEGylation. Biomaterials, 2010, 31, 934-942.	5.7	58
23	Electron-rich carbon nanorings as macrocyclic hosts for fullerenes. Chemical Communications, 2013, 49, 9092.	2.2	58
24	Polyaddition and Polycondensation Reactions of (2-Furyl)carbenoid as Step-Growth Polymerization Strategies: Synthesis of Furylcyclopropane- and Furfurylidene-Containing Polymers. Angewandte Chemie - International Edition, 2004, 43, 1857-1860.	7.2	57
25	Highly Fluorescent BODIPY Dyes Modulated with Spirofluorene Moieties. Organic Letters, 2010, 12, 296-299.	2.4	57
26	Ru-Catalyzed Ring-Opening and Substitution Reactions of Heteroaromatic Compounds Using Propargylic Carboxylates as Precursors of Vinylcarbenoids. Organic Letters, 2006, 8, 1741-1743.	2.4	56
27	Asymmetric Synthesis of 2 <i>H</i> â€Azirines with a Tetrasubstituted Stereocenter by Enantioselective Ring Contraction of Isoxazoles. Angewandte Chemie - International Edition, 2018, 57, 1039-1043.	7.2	55
28	New Examples of 1,6- and 1,7-Hydrogen Transfer Promoted by an α-Silyl Group in Rhodium(I)-Catalyzed Radical Reactions of Acyclic Enediynes. Organometallics, 1998, 17, 2942-2944.	1.1	48
29	Transition metal-catalyzed pentannulation of propargyl acetates via styrylcarbene intermediates. Tetrahedron, 2007, 63, 12138-12148.	1.0	47
30	Bis-Metal Complexes of Doubly N-Confused Dioxohexaphyrins as Potential Near-Infrared-II Photoacoustic Dyes. Journal of the American Chemical Society, 2020, 142, 4429-4437.	6.6	46
31	A new route to 3-acyl-2-aminobenzofurans: palladium-catalysed cycloisomerisation of 2-(cyanomethyl)phenyl esters. Chemical Communications, 2009, , 3466.	2.2	45
32	Near-Infrared Dye-Conjugated Amphiphilic Hyaluronic Acid Derivatives as a Dual Contrast Agent for In Vivo Optical and Photoacoustic Tumor Imaging. Biomacromolecules, 2015, 16, 219-227.	2.6	45
33	Synthesis of Strained Pyridine-Containing Cyclyne via Reductive Aromatization. Journal of Organic Chemistry, 2010, 75, 3537-3540.	1.7	43
34	An unexpected disproportional reaction of 2H-azirines giving (1E,3Z)-2-aza-1,3-dienes and aromatic nitriles in the presence of nickel catalysts. Chemical Communications, 2012, 48, 3554.	2.2	42
35	Copper-Catalyzed C–H Cyanation of Terminal Alkynes with Cyanogen Iodide. Organic Letters, 2013, 15, 5810-5813.	2.4	41
36	Divergent Catalytic Approach from Cyclic Oxime Esters to Nitrogen-Containing Heterocycles with Group 9 Metal Catalysts. ACS Catalysis, 2018, 8, 7773-7780.	5.5	40

#	Article	IF	CITATIONS
37	Palladium catalyzed reaction of methylene-oxazolidinones. Intervention of palladium complex of Y-shaped CH2C(NTs)CH2 molecule as isostructure of trimethylenemethane. Journal of the American Chemical Society, 1990, 112, 9646-9647.	6.6	38
38	Nearâ€Infrared Circularly Polarized Luminescence through Intramolecular Excimer Formation of Oligo(<i>p</i> â€phenyleneethynylene)â€Based Double Helicates. Chemistry - A European Journal, 2019, 25, 9211-9216.	1.7	37
39	Ï€â€Conjugated Macrocycles Bearing Angleâ€Strained Alkynes. Chemistry - A European Journal, 2020, 26, 2529-2575.	1.7	36
40	Ring-Opening Metathesis Polymerization-Based Synthesis of ICG-Containing Amphiphilic Triblock Copolymers for in Vivo Tumor Imaging. Bioconjugate Chemistry, 2009, 20, 511-517.	1.8	35
41	Influence of Side Chain Length on Fluorescence Intensity of ROMPâ€Based Polymeric Nanoparticles and Their Tumor Specificity in Inâ€Vivo Tumor Imaging. Small, 2011, 7, 3536-3547.	5.2	35
42	Gold-catalysed cycloisomerisation reactions of 2-(2-propynyl)pyridine N-oxides leading to indolizinones. Chemical Communications, 2012, 48, 7622.	2.2	35
43	pH-Responsive near-infrared fluorescent cyanine dyes for molecular imaging based on pH sensing. Chemical Communications, 2017, 53, 7792-7795.	2.2	35
44	Catalytic Diastereoselective Imidation of Diaryl Sulfides Bearing a Chiral Oxazolinyl Moiety with Chloramine T Trihydrate. Angewandte Chemie - International Edition, 1999, 38, 1288-1289.	7.2	34
45	Unique Tube–Ring Interactions: Complexation of Singleâ€Walled Carbon Nanotubes with Cycloparaphenyleneacetylenes. Small, 2018, 14, e1800720.	5.2	34
46	Pd- and Cu-Catalyzed One-Pot Multicomponent Synthesis of Hetero α,α′-Dimers of Heterocycles. Organic Letters, 2012, 14, 2296-2299.	2.4	33
47	Alkyne-coordinating tridentate ligands: structural properties and reactivity of their rhodium complexes. Dalton Transactions, 2012, 41, 10926.	1.6	33
48	Polymeric Self-Assemblies with Boron-Containing Near-Infrared Dye Dimers for Photoacoustic Imaging Probes. Biomacromolecules, 2017, 18, 249-256.	2.6	33
49	Facile Construction of Tetrahydropyrrolizines by Iron-Catalyzed Double Cyclization of Alkene-Tethered Oxime Esters with 1,2-Disubstituted Alkenes. Organic Letters, 2018, 20, 3044-3048.	2.4	33
50	Indium-Catalyzed [2 + 2] Cycloaddition of Allylsilanes to Internal Alkynones. Organic Letters, 2015, 17, 5843-5845.	2.4	32
51	pH-Activatable Cyanine Dyes for Selective Tumor Imaging Using Near-Infrared Fluorescence and Photoacoustic Modalities. ACS Sensors, 2021, 6, 123-129.	4.0	30
52	Copper-Catalyzed Cyanation of Aryl- and Alkenylboronic Reagents with Cyanogen lodide. Organic Letters, 2015, 17, 4670-4673.	2.4	29
53	Catalytic diastereoselective sulfimidation of diaryl sulfides and application of chiral sulfimides to asymmetric allylic alkylation. , 2000, 12, 299-312.		28
54	Acid atalyzed Direct Conjugate Alkenylation of α,βâ€Unsaturated Ketones. Angewandte Chemie - International Edition, 2013, 52, 10639-10643.	7.2	28

#	Article	IF	CITATIONS
55	Selective conjugate addition to zerumbone and transannular cyclization of its derivatives. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3627-3634.	1.3	27
56	Copper-Catalyzed Regio- and Stereoselective Iodocyanation and Dicyanation of Alkynes with Cyanogen Iodide. Organic Letters, 2017, 19, 3422-3425.	2.4	25
57	Synthesis of Imidazoles and Pyrimidines Using Palladium-Catalyzed DecarÂboxylative Intramolecular Condensation of 1,2,4-Oxadiazol-5(4H)-ones. Synlett, 2014, 25, 1916-1920.	1.0	24
58	Near-infrared BODIPY dyes modulated with spirofluorene moieties. Tetrahedron, 2011, 67, 3105-3110.	1.0	23
59	Transition metal-catalyzed ring-opening, substitution, and cyclopropanation reactions via vinylcarbene complexes generated from O-propargyl thiocarbamates. Tetrahedron Letters, 2007, 48, 6651-6654.	0.7	22
60	Ruthenium-catalyzed Decarboxylative and Dehydrogenative Formation of Highly Substituted Pyridines from Alkene-tethered Isoxazol-5(4 <i>H</i>)-ones. Chemistry Letters, 2016, 45, 988-990.	0.7	21
61	Ironâ€Catalyzed Aminative Cyclization/Intermolecular Homolytic Aromatic Substitution Using Oxime Esters and Simple Arenes. Chemistry - an Asian Journal, 2018, 13, 395-399.	1.7	21
62	Synthesis of 2 <i>H</i> â€Azirines by Iridiumâ€Catalyzed Decarboxylative Ring Contraction of Isoxazolâ€5(4 <i>H</i>)â€ones. Angewandte Chemie, 2016, 128, 7315-7318.	1.6	20
63	Rhodium-Catalyzed Reaction of 2H-Azirines with Carbonyl-ene-yne Compounds Giving 1-Furyl-2-aza-1,3-dienes. Synlett, 2013, 24, 1541-1544.	1.0	18
64	Atom-efficient synthesis of α-alkylidene-N-furylimines via catalytic vinylcarbene-transfer reactions to carbonyl-ene-nitrile compounds. Chemical Communications, 2010, 46, 3366.	2.2	17
65	Development of Catalytic Carbene Transfer Reactions Using Alkynes as a Source of Carbenes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 1161-1171.	0.0	16
66	Asymmetric Synthesis of 2 <i>H</i> â€Azirines with a Tetrasubstituted Stereocenter by Enantioselective Ring Contraction of Isoxazoles. Angewandte Chemie, 2018, 130, 1051-1055.	1.6	16
67	Substituted <i>meso</i> -vinyl-BODIPY as thiol-selective fluorogenic probes for sensing unfolded proteins in the endoplasmic reticulum. Chemical Communications, 2021, 57, 1818-1821.	2.2	15
68	Stereoselective Construction of 1,3â€Disilylcyclopentane Derivatives by Scandium atalyzed [3+2] Cycloaddition of Allylsilanes to βâ€6ilylenones. Angewandte Chemie - International Edition, 2014, 53, 10195-10199.	7.2	14
69	Generation of Stable Ruthenium(IV) Ketimido Complexes by Oxidative Addition of Oxime Esters to Ruthenium(II): Reactivity Studies Based on Electronic Properties of the Ruâ^'N Bond. Chemistry - A European Journal, 2017, 23, 16892-16897.	1.7	14
70	Palladium-catalyzed three-component coupling reactions of 2-(cyanomethyl)phenol, aryl halides, and carbon monoxide. Tetrahedron, 2015, 71, 4432-4437.	1.0	13
71	Copper-catalyzed transformation of carbonyl-ene-nitrile compounds: Vinylation, imino ene reaction, and alkynylation of 2-aza-2,4-cyclopentadienone intermediates generated via Ritter-type hydration and dehydrative cyclization reactions. Journal of Organometallic Chemistry, 2007, 692, 579-584.	0.8	12
72	Sonicationâ€Induced Formation of Sizeâ€Controlled Selfâ€Assemblies of Amphiphilic Janusâ€Type Polymers as Optical Tumorâ€Imaging Agents. Small, 2014, 10, 3119-3130.	5.2	12

#	Article	IF	CITATIONS
73	An enzyme-triggered turn-on fluorescent probe based on carboxylate-induced detachment of a fluorescence quencher. Organic and Biomolecular Chemistry, 2020, 18, 8620-8624.	1.5	12
74	Deep-Red/Near-Infrared Turn-On Fluorescence Probes for Aldehyde Dehydrogenase 1A1 in Cancer Stem Cells. ACS Sensors, 2021, 6, 3320-3329.	4.0	12
75	Enantioselective conversion of meso-cyclic disulfides to chiral cyclic sulfides via desulfurization with chiral aminophosphines. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1595-1599.	1.3	11
76	Incorporation of Monatomic Cations onto an Ir–Ir Bond in a Dimeric Iridium(II) Complex Having a 1,3-Diene-1,4-diyl Backbone. Organometallics, 2018, 37, 2319-2324.	1.1	11
77	Amphiphilic Brush-Like Copolymers Involving Hydrophobic Amino Acid- and Oligopeptide-Side Chains for Optical Tumor Imaging In Vivo. Bulletin of the Chemical Society of Japan, 2012, 85, 1277-1286.	2.0	10
78	C–H Activation Induced by Oxidative Addition of N–O Bonds in Oxime Esters: Formation of Rhodacycles and Cycloaddition with Alkynes. Organometallics, 2016, 35, 2026-2031.	1.1	10
79	pH-Responsive Cy5 dyes having nucleophilic substituents for molecular imaging. Tetrahedron Letters, 2018, 59, 3317-3321.	0.7	9
80	An activator-induced quencher-detachment-based turn-on probe with a cationic substrate moiety for acetylcholinesterase. Chemical Communications, 2022, 58, 1510-1513.	2.2	9
81	MMP-2-Activatable Photoacoustic Tumor Imaging Probes Based on Al- and Si-Naphthalocyanines. Bioconjugate Chemistry, 2021, 32, 1773-1781.	1.8	8
82	Synthesis of Biocompatible Polysaccharide Analogues and Their Application to In Vivo Optical Tumor Imaging. Bulletin of the Chemical Society of Japan, 2015, 88, 792-803.	2.0	5
83	Metathesis Polymerization-Based Synthesis of Functionalized Polymers Aiming at Medicinal Application. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 601-615.	0.0	5
84	Stereoselective Construction of 1,3â€Disilylcyclopentane Derivatives by Scandium atalyzed [3+2] Cycloaddition of Allylsilanes to βâ€&ilylenones. Angewandte Chemie, 2014, 126, 10359-10363.	1.6	4
85	pH Responsiveness of Near-infrared Fluorescent Cyanine Dyes Encapsulated in Self-assemblies Composed of Various Amphiphiles. Chemistry Letters, 2018, 47, 1147-1150.	0.7	4
86	The Reaction Pathway Leading to Dinuclear Rhodium and Iridium Complexes from Alkyne-Containing Bisphosphine Ligands. Bulletin of the Chemical Society of Japan, 2020, 93, 794-798.	2.0	4
87	Bimetallic Reactivities of Dinuclear Iridium and Rhodium Complexes Generated from Two Types of Alkyne ontaining Bisphosphine Ligands. European Journal of Inorganic Chemistry, 2020, 2020, 1894-1901.	1.0	4
88	Identification of Breast Cancer Stem Cells Using a Newly Developed Long-acting Fluorescence Probe, C5S-A, Targeting ALDH1A1. Anticancer Research, 2022, 42, 1199-1205.	0.5	4
89	Dual-Stimuli-Responsive Probes for Detection of Ovarian Cancer Cells and Quantification of Both pH and Enzyme Activity. Bulletin of the Chemical Society of Japan, 2021, 94, 2068-2075.	2.0	3
90	Palladium-Catalyzed Selective Formation of Substituted Pyrroles from Alkene-tethered Cyclic Oxime Esters. Heterocycles, 2018, 97, 218.	0.4	3

#	Article	IF	CITATIONS
91	Carbon Nanomaterials: Unique Tube–Ring Interactions: Complexation of Singleâ€Walled Carbon Nanotubes with Cycloparaphenyleneacetylenes (Small 26/2018). Small, 2018, 14, 1870120.	5.2	2
92	Properties and Reactivities of Zwitterionic Platinum(II)-ate Complexes Generated by Transforming Coordination of an Alkyne–Bisphosphine Ligand. Organometallics, 2021, 40, 848-856.	1.1	2
93	Aluminum naphthalocyanine conjugate as an MMP-2-activatable photoacoustic probe for in vivo tumor imaging. Methods in Enzymology, 2021, 657, 89-109.	0.4	1
94	Chemistry of 2H-Azirines from Old to New — Selective Synthesis and Transformation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 1126-1137.	0.0	1
95	Asymmetric Hydrogenation of Enamides in Aqueous Media with a New Water-Soluble Chiral Rhodium-α,α-trehalose-Derived Phosphine—Phosphinite Catalyst ChemInform, 2003, 34, no.	0.1	0
96	A New Ruthenium-Catalyzed Cyclopropanation of Alkenes Using Propargylic Acetates as a Precursor of Vinylcarbenoids ChemInform, 2003, 34, no.	0.1	0
97	Doyle—Kirmse Reaction of Allylic Sulfides with Diazoalkane-Free (2-Furyl)carbenoid Transfer ChemInform, 2003, 34, no.	0.1	0
98	Rhodium-Catalyzed Cyclopropanation Using Ene-yne-imino Ether Compounds as Precursors of (2-Pyrrolyl)carbenoids ChemInform, 2003, 34, no.	0.1	0
99	Ruthenium-Catalyzed Cyclopropanation of Alkenes Using Propargylic Carboxylates as Precursors of Vinylcarbenoids ChemInform, 2004, 35, no.	0.1	0
100	Catalytic Cyclopropanation of Alkenes via (2-Furyl)carbene Complexes from 1-Benzoyl-cis-1-buten-3-yne with Transition Metal Compounds ChemInform, 2004, 35, no.	0.1	0
101	Transition Metal Catalyzed Reactions Using Alkynes as Precursors of Carbene, Vinylidene, and Allenylidene Complexes. ChemInform, 2005, 36, no.	0.1	0
102	Transition Metal-Catalyzed Reactions Using Alkynes as Precursors of Carbene and Vinylidene Complexes. ChemInform, 2005, 36, no.	0.1	0
103	Innenrücktitelbild: Asymmetric Synthesis of 2 <i>H</i> â€Azirines with a Tetrasubstituted Stereocenter by Enantioselective Ring Contraction of Isoxazoles (Angew. Chem. 4/2018). Angewandte Chemie, 2018, 130, 1131-1131.	1.6	0
104	Nearâ€Infrared Circularly Polarized Luminescence through Intramolecular Excimer Formation of Oligo(p â€phenyleneethynylene)â€Based Double Helicates. Chemistry - A European Journal, 2019, 25, 9122-9122.	1.7	0
105	Frontispiece: π onjugated Macrocycles Bearing Angle‣trained Alkynes. Chemistry - A European Journal, 2020, 26, .	1.7	0
106	Amphiphilic γ-cyclodextrin–fullerene complexes with photodynamic activity. Materials Advances, 2022, 3, 312-317.	2.6	0