
Eric T Harvill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1865464/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Natural History and Ecology of Interactions Between Bordetella Species and Amoeba. Frontiers in Cellular and Infection Microbiology, 2022, 12, 798317.	1.8	6
2	Bbvac: A Live Vaccine Candidate That Provides Long-Lasting Anamnestic and Th17-Mediated Immunity against the Three Classical <i>Bordetella</i> spp MSphere, 2022, 7, e0089221.	1.3	9
3	Contribution of a Novel Pertussis Toxin-Like Factor in Mediating Persistent Otitis Media. Frontiers in Cellular and Infection Microbiology, 2022, 12, 795230.	1.8	1
4	Modeling the catarrhal stage of <i>Bordetella pertussis</i> upper respiratory tract infections in mice. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	4
5	Pertactin-Deficient <i>Bordetella pertussis</i> , Vaccine-Driven Evolution, and Reemergence of Pertussis. Emerging Infectious Diseases, 2021, 27, 1561-1566.	2.0	29
6	Pertactin contributes to shedding and transmission of Bordetella bronchiseptica. PLoS Pathogens, 2021, 17, e1009735.	2.1	4
7	Modeling Immune Evasion and Vaccine Limitations by Targeted Nasopharyngeal <i>Bordetella pertussis</i> Inoculation in Mice. Emerging Infectious Diseases, 2021, 27, 2107-2116.	2.0	9
8	Probing Immune-Mediated Clearance of Acute Middle Ear Infection in Mice. Frontiers in Cellular and Infection Microbiology, 2021, 11, 815627.	1.8	4
9	Evolution and Conservation of Bordetella Intracellular Survival in Eukaryotic Host Cells. Frontiers in Microbiology, 2020, 11, 557819.	1.5	5
10	Disrupting Bordetella Immunosuppression Reveals a Role for Eosinophils in Coordinating the Adaptive Immune Response in the Respiratory Tract. Microorganisms, 2020, 8, 1808.	1.6	13
11	Overcoming Waning Immunity in Pertussis Vaccines: Workshop of the National Institute of Allergy and Infectious Diseases. Journal of Immunology, 2020, 205, 877-882.	0.4	17
12	Acellular Pertussis Vaccine Components: Today and Tomorrow. Vaccines, 2020, 8, 217.	2.1	28
13	Highlights of the 12th International <i>Bordetella </i> Symposium. Clinical Infectious Diseases, 2020, 71, 2521-2526.	2.9	10
14	Bordetella bronchiseptica Diguanylate Cyclase BdcA Regulates Motility and Is Important for the Establishment of Respiratory Infection in Mice. Journal of Bacteriology, 2019, 201, .	1.0	6
15	Signs and Symptoms That Rule out Community-Acquired Pneumonia in Outpatient Adults: A Systematic Review and Meta-Analysis. Journal of the American Board of Family Medicine, 2019, 32, 234-247.	0.8	21
16	A model of chronic, transmissible Otitis Media in mice. PLoS Pathogens, 2019, 15, e1007696.	2.1	18
17	Did new transmission cycles in anthropogenic, dense, host populations encourage the emergence and speciation of pathogenic Bordetella?. PLoS Pathogens, 2019, 15, e1007600.	2.1	4
18	Enhancement of immune response against Bordetella spp. by disrupting immunomodulation. Scientific Reports, 2019, 9, 20261.	1.6	22

#	Article	IF	CITATIONS
19	Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Frontiers in Immunology, 2019, 10, 2869.	2.2	10
20	Genotypic and phenotypic adaptation of pathogens: lesson from the genus Bordetella. Current Opinion in Infectious Diseases, 2019, 32, 223-230.	1.3	26
21	Conservation of Ancient Genetic Pathways for Intracellular Persistence Among Animal Pathogenic Bordetellae. Frontiers in Microbiology, 2019, 10, 2839.	1.5	15
22	Integrated Signaling Pathways Mediate Bordetella Immunomodulation, Persistence, and Transmission. Trends in Microbiology, 2019, 27, 118-130.	3.5	20
23	Clinical management decisions for adults with prolonged acute cough: Frequency and associated factors. American Journal of Emergency Medicine, 2019, 37, 1681-1685.	0.7	3
24	Virulent Epidemic Pneumonia in Sheep Caused by the Human Pathogen Acinetobacter baumannii. Frontiers in Microbiology, 2018, 9, 2616.	1.5	20
25	Blood or Serum Exposure Induce Global Transcriptional Changes, Altered Antigenic Profile, and Increased Cytotoxicity by Classical Bordetellae. Frontiers in Microbiology, 2018, 9, 1969.	1.5	17
26	Development of macrolide resistance in Bordetella bronchiseptica is associated with the loss of virulence. Journal of Antimicrobial Chemotherapy, 2018, 73, 2797-2805.	1.3	9
27	Basics of pertussis pathogenesis. , 2018, , 26-41.		4
28	An Extracellular Polysaccharide Locus Required for Transmission of Bordetella bronchiseptica. Journal of Infectious Diseases, 2017, 216, 899-906.	1.9	8
29	Evolution of Bordetellae from Environmental Microbes to Human Respiratory Pathogens: Amoebae as a Missing Link. Frontiers in Cellular and Infection Microbiology, 2017, 7, 510.	1.8	28
30	Environmental Origin of the Genus Bordetella. Frontiers in Microbiology, 2017, 8, 28.	1.5	52
31	Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biology, 2017, 15, e2000420.	2.6	60
32	Bordetella parapertussis Circumvents Neutrophil Extracellular Bactericidal Mechanisms. PLoS ONE, 2017, 12, e0169936.	1.1	24
33	Pathogen manipulation of host metabolism: A common strategy for immune evasion. PLoS Pathogens, 2017, 13, e1006669.	2.1	27
34	Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics, 2016, 17, 767.	1.2	70
35	Identification and taxonomic characterization of Bordetella pseudohinzii sp. nov. isolated from laboratory-raised mice. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 5452-5459.	0.8	37
36	Draft Genome Sequences of 53 Genetically Distinct Isolates of Bordetella bronchiseptica Representing 11 Terrestrial and Aquatic Hosts. Genome Announcements, 2015, 3, .	0.8	7

#	Article	IF	CITATIONS
37	A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease. BMC Genomics, 2015, 16, 863.	1.2	21
38	Host Specificity of Ovine Bordetella parapertussis and the Role of Complement. PLoS ONE, 2015, 10, e0130964.	1.1	7
39	Microbial communities present in the lower respiratory tract of clinically healthy birds in Pakistan. Poultry Science, 2015, 94, 612-620.	1.5	36
40	Novel, host-restricted genotypes of Bordetella bronchiseptica associated with phocine respiratory tract isolates. Microbiology (United Kingdom), 2015, 161, 580-592.	0.7	7
41	What to do about pertussis vaccines? Linking what we know about pertussis vaccine effectiveness, immunology and disease transmission to create a better vaccine: Graphical Abstract Figure Pathogens and Disease, 2015, 73, ftv057.	0.8	31
42	A cocktail of humanized anti–pertussis toxin antibodies limits disease in murine and baboon models of whooping cough. Science Translational Medicine, 2015, 7, 316ra195.	5.8	48
43	Draft Genome Sequences of Six Bordetella hinzii Isolates Acquired from Avian and Mammalian Hosts. Genome Announcements, 2015, 3, .	0.8	9
44	Diversity of secretion systems associated with virulence characteristics of the classical bordetellae. Microbiology (United Kingdom), 2015, 161, 2328-2340.	0.7	13
45	Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection. PLoS ONE, 2015, 10, e0140743.	1.1	33
46	Toll-Like Receptor 4 Limits Transmission of Bordetella bronchiseptica. PLoS ONE, 2014, 9, e85229.	1.1	15
47	Genome Sequences of Nine Bordetella holmesii Strains Isolated in the United States. Genome Announcements, 2014, 2, .	0.8	22
48	Global Population Structure and Evolution of Bordetella pertussis and Their Relationship with Vaccination. MBio, 2014, 5, e01074.	1.8	257
49	Pertussis PathogenesisWhat We Know and What We Don't Know. Journal of Infectious Diseases, 2014, 209, 982-985.	1.9	64
50	Resident Microbiota Affect Bordetella pertussis Infectious Dose and Host Specificity. Journal of Infectious Diseases, 2014, 209, 913-921.	1.9	50
51	Different Effects of Whole-Cell and Acellular Vaccines on Bordetella Transmission. Journal of Infectious Diseases, 2014, 209, 1981-1988.	1.9	35
52	Enzymatic Modification of Lipid A by ArnT Protects Bordetella bronchiseptica against Cationic Peptides and Is Required for Transmission. Infection and Immunity, 2014, 82, 491-499.	1.0	21
53	Bordetella parapertussis Survives inside Human Macrophages in Lipid Raft-Enriched Phagosomes. Infection and Immunity, 2014, 82, 5175-5184.	1.0	14
54	Caspase-1-Independent Interleukin-1β Is Required for Clearance of Bordetella pertussis Infections and Whole-Cell Vaccine-Mediated Immunity. PLoS ONE, 2014, 9, e107188.	1.1	16

#	Article	IF	CITATIONS
55	Horizontally acquired divergent O-antigen contributes to escape from cross-immunity in the classical bordetellae. BMC Evolutionary Biology, 2013, 13, 209.	3.2	13
56	Differential expression of microRNAs in exhaled breath condensates of patients with asthma, patients with chronic obstructive pulmonary disease, and healthy adults. Journal of Allergy and Clinical Immunology, 2013, 132, 217-219.e2.	1.5	94
57	Genome Sequences of 28 Bordetella pertussis U.S. Outbreak Strains Dating from 2010 to 2012. Genome Announcements, 2013, 1, .	0.8	13
58	Cultivating Our "Frienemies― Viewing Immunity as Microbiome Management. MBio, 2013, 4, .	1.8	9
59	Generating super-shedders: co-infection increases bacterial load and egg production of a gastrointestinal helminth. Journal of the Royal Society Interface, 2013, 10, 20120588.	1.5	74
60	Critical Pertussis Illness in Children. Pediatric Critical Care Medicine, 2013, 14, 356-365.	0.2	87
61	Teaching Ethical Aptitude to Graduate Student Researchers. Accountability in Research, 2013, 20, 5-12.	1.6	9
62	Bordetella parapertussis Survives the Innate Interaction with Human Neutrophils by Impairing Bactericidal Trafficking inside the Cell through a Lipid Raft-Dependent Mechanism Mediated by the Lipopolysaccharide O Antigen. Infection and Immunity, 2012, 80, 4309-4316.	1.0	19
63	Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics, 2012, 13, 545.	1.2	99
64	Phenotypic and Genomic Analysis of Hypervirulent Human-associated Bordetella bronchiseptica. BMC Microbiology, 2012, 12, 167.	1.3	18
65	sigE facilitates the adaptation of Bordetella bronchiseptica to stress conditions and lethal infection in immunocompromised mice. BMC Microbiology, 2012, 12, 179.	1.3	13
66	Identification of a CO2 Responsive Regulon in Bordetella. PLoS ONE, 2012, 7, e47635.	1.1	31
67	Lack of Cross-protection against <i>Bordetella holmesii</i> after Pertussis Vaccination. Emerging Infectious Diseases, 2012, 18, 1771-1779.	2.0	30
68	A Type VI Secretion System Encoding Locus Is Required for Bordetella bronchiseptica Immunomodulation and Persistence In Vivo. PLoS ONE, 2012, 7, e45892.	1.1	38
69	The Collaborative Pediatric Critical Care Research Network Critical Pertussis Study: Collaborative research in pediatric critical care medicine*. Pediatric Critical Care Medicine, 2011, 12, 387-392.	0.2	27
70	Seasonal breeding drives the incidence of a chronic bacterial infection in a free-living herbivore population. Epidemiology and Infection, 2011, 139, 1210-1219.	1.0	11
71	Decreased Leukocyte Accumulation and DelayedBordetella pertussisClearance in IL-6â^'/â^'Mice. Journal of Immunology, 2011, 186, 4895-4904.	0.4	17
72	Interleukin-1 Receptor Signaling Is Required To Overcome the Effects of Pertussis Toxin and for Efficient Infection- or Vaccination-Induced Immunity against <i>Bordetella pertussis</i> . Infection and Immunity, 2011, 79, 527-541.	1.0	16

#	Article	IF	CITATIONS
73	Intracellular Trafficking of <i>Bordetella pertussis</i> in Human Macrophages. Infection and Immunity, 2010, 78, 907-913.	1.0	63
74	Acellular pertussis vaccination facilitates <i>Bordetella parapertussis</i> infection in a rodent model of bordetellosis. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2017-2025.	1.2	28
75	IL-10 Induction by <i>Bordetella parapertussis</i> Limits a Protective IFN-Î ³ Response. Journal of Immunology, 2010, 184, 1392-1400.	0.4	24
76	Antigenic Variation among Bordetella. Journal of Biological Chemistry, 2010, 285, 26869-26877.	1.6	10
77	Identifying the Age Cohort Responsible for Transmission in a Natural Outbreak of Bordetella bronchiseptica. PLoS Pathogens, 2010, 6, e1001224.	2.1	17
78	Imperfect vaccine-induced immunity and whooping cough transmission to infants. Vaccine, 2010, 29, 11-16.	1.7	49
79	Inefficient Toll-Like Receptor-4 Stimulation Enables Bordetella parapertussis to Avoid Host Immunity. PLoS ONE, 2009, 4, e4280.	1.1	25
80	Bordetella pertussis Infection or Vaccination Substantially Protects Mice against B. bronchiseptica Infection. PLoS ONE, 2009, 4, e6778.	1.1	22
81	Evidence for Horizontal Gene Transfer of Two Antigenically Distinct O Antigens in <i>Bordetella bronchiseptica</i> . Infection and Immunity, 2009, 77, 3249-3257.	1.0	20
82	Evolution of Acute Infections and the Invasionâ€Persistence Tradeâ€Off. American Naturalist, 2009, 173, 446-455.	1.0	58
83	The O Antigen Is a Critical Antigen for the Development of a Protective Immune Response to <i>Bordetella parapertussis</i> . Infection and Immunity, 2009, 77, 5050-5058.	1.0	16
84	Constraint-based network model of pathogen–immune system interactions. Journal of the Royal Society Interface, 2009, 6, 599-612.	1.5	59
85	Microarray and Functional Analysis of Growth Phase-Dependent Gene Regulation in <i>Bordetella bronchiseptica</i> . Infection and Immunity, 2009, 77, 4221-4231.	1.0	28
86	Role of the Type III Secretion System in a Hypervirulent Lineage of <i>Bordetella bronchiseptica</i> . Infection and Immunity, 2009, 77, 3969-3977.	1.0	44
87	O Antigen Allows B. parapertussis to Evade B. pertussis Vaccine–Induced Immunity by Blocking Binding and Functions of Cross-Reactive Antibodies. PLoS ONE, 2009, 4, e6989.	1.1	26
88	Analysis with Mathematical Models Provides Insights into Infectious Diseases. Microbe Magazine, 2009, 4, 176-182.	0.4	3
89	Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biology, 2008, 9, R70.	13.9	282
90	Replacement of Adenylate Cyclase Toxin in a Lineage of <i>Bordetella bronchiseptica</i> . Journal of Bacteriology, 2008, 190, 5502-5511.	1.0	43

#	Article	IF	CITATIONS
91	O Antigen Protects <i>Bordetella parapertussis</i> from Complement. Infection and Immunity, 2008, 76, 1774-1780.	1.0	48
92	Anamnestic Protective Immunity to <i>Bacillus anthracis</i> Is Antibody Mediated but Independent of Complement and Fc Receptors. Infection and Immunity, 2008, 76, 2177-2182.	1.0	10
93	Of mice and men: asymmetric interactions between <i>Bordetella</i> pathogen species. Parasitology, 2008, 135, 1517-1529.	0.7	16
94	Comparative Role of Immunoglobulin A in Protective Immunity against the Bordetellae. Infection and Immunity, 2007, 75, 4416-4422.	1.0	35
95	Modeling Systems-Level Regulation of Host Immune Responses. PLoS Computational Biology, 2007, 3, e109.	1.5	119
96	Use of a Genetically Defined Double Mutant Strain of Bordetella bronchiseptica Lacking Adenylate Cyclase and Type III Secretion as a Live Vaccine. Infection and Immunity, 2007, 75, 3665-3672.	1.0	20
97	The O Antigen Enables <i>Bordetella parapertussis</i> To Avoid <i>Bordetella pertussis</i> -Induced Immunity. Infection and Immunity, 2007, 75, 4972-4979.	1.0	44
98	Delayed Role of Tumor Necrosis Factor–α in Overcoming the Effects of Pertussis Toxin. Journal of Infectious Diseases, 2007, 196, 1228-1236.	1.9	15
99	IEIIS Meeting minireview: Bordetella evolution: lipid A and Toll-like receptor 4. Journal of Endotoxin Research, 2007, 13, 243-247.	2.5	10
100	Different mechanisms of vaccine-induced and infection-induced immunity to Bordetella bronchiseptica. Microbes and Infection, 2007, 9, 442-448.	1.0	25
101	Effects of Noise on Ecological Invasion Processes: Bacteriophage-Mediated Competition in Bacteria. Journal of Statistical Physics, 2007, 128, 229-256.	0.5	0
102	CD11b is required for the resolution of inflammation induced by Bordetella bronchiseptica respiratory infection. Cellular Microbiology, 2006, 8, 758-768.	1.1	20
103	Bacteriophage-mediated competition in Bordetella bacteria. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1843-1848.	1.2	52
104	The Bordetella bronchiseptica Type III Secretion System Inhibits Gamma Interferon Production That Is Required for Efficient Antibody-Mediated Bacterial Clearance. Infection and Immunity, 2006, 74, 1043-1049.	1.0	69
105	Comparative Toll-Like Receptor 4-Mediated Innate Host Defense to Bordetella Infection. Infection and Immunity, 2005, 73, 8144-8152.	1.0	63
106	MyD88-Dependent Signaling Contributes to Protection following Bacillus anthracis Spore Challenge of Mice: Implications for Toll-Like Receptor Signaling. Infection and Immunity, 2005, 73, 7535-7540.	1.0	49
107	Complement Depletion Renders C57BL/6 Mice Sensitive to the Bacillus anthracis Sterne Strain. Infection and Immunity, 2005, 73, 4420-4422.	1.0	46
108	Clearance of Bordetella parapertussis from the Lower Respiratory Tract Requires Humoral and Cellular Immunity. Infection and Immunity, 2005, 73, 6508-6513.	1.0	28

#	Article	IF	CITATIONS
109	The Complex Mechanism of Antibody-Mediated Clearance ofBordetellafrom the Lungs Requires TLR4. Journal of Immunology, 2005, 175, 7504-7511.	0.4	41
110	BordetellaType III Secretion Modulates Dendritic Cell Migration Resulting in Immunosuppression and Bacterial Persistence. Journal of Immunology, 2005, 175, 4647-4652.	0.4	64
111	Evolution and emergence of Bordetella in humans. Trends in Microbiology, 2005, 13, 355-359.	3.5	83
112	Pertussis toxin inhibits neutrophil recruitment to delay antibody-mediated clearance of Bordetella pertussis. Journal of Clinical Investigation, 2005, 115, 3594-3601.	3.9	124
113	Tollâ€Like Receptor 4 Is Critical to Innate Host Defense in a Murine Model of Bordetellosis. Journal of Infectious Diseases, 2004, 189, 833-836.	1.9	50
114	pagP Is Required for Resistance to Antibody-Mediated Complement Lysis during Bordetella bronchiseptica Respiratory Infection. Infection and Immunity, 2004, 72, 2837-2842.	1.0	54
115	Toll-Like Receptor 4-Dependent Early Elicited Tumor Necrosis Factor Alpha Expression Is Critical for Innate Host Defense against Bordetella bronchiseptica. Infection and Immunity, 2004, 72, 6650-6658.	1.0	46
116	Strain-Dependent Role of BrkA during Bordetella pertussis Infection of the Murine Respiratory Tract. Infection and Immunity, 2004, 72, 5919-5924.	1.0	32
117	Genomic and Genetic Analysis of Bordetella Bacteriophages Encoding Reverse Transcriptase-Mediated Tropism-Switching Cassettes. Journal of Bacteriology, 2004, 186, 1503-1517.	1.0	81
118	Antibody-mediated bacterial clearance from the lower respiratory tract of mice requires complement component C3. European Journal of Immunology, 2004, 34, 184-193.	1.6	31
119	Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Molecular Microbiology, 2003, 48, 725-736.	1.2	95
120	Bordetella pertussis Acquires Resistance to Complement-Mediated Killing In Vivo. Infection and Immunity, 2003, 71, 4936-4942.	1.0	30
121	Role of Antibodies in Immunity to Bordetella Infections. Infection and Immunity, 2003, 71, 1719-1724.	1.0	82
122	Role of Bordetella O Antigen in Respiratory Tract Infection. Infection and Immunity, 2003, 71, 86-94.	1.0	60
123	Comparative Phenotypic Analysis of the Bordetella parapertussis Isolate Chosen for Genomic Sequencing. Infection and Immunity, 2002, 70, 3777-3784.	1.0	47
124	Mice Lacking the Orphan G Protein-Coupled Receptor G2A Develop a Late-Onset Autoimmune Syndrome. Immunity, 2001, 14, 561-571.	6.6	189
125	Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Molecular Microbiology, 2000, 35, 991-1004.	1.2	156
126	Multiple Roles for Bordetella Lipopolysaccharide Molecules during Respiratory Tract Infection. Infection and Immunity, 2000, 68, 6720-6728.	1.0	113

#	Article	IF	CITATIONS
127	Manipulating the host to study bacterial virulence. Current Opinion in Microbiology, 2000, 3, 93-96.	2.3	14
128	Pregenomic Comparative Analysis between <i>Bordetella bronchiseptica</i> RB50 and <i>Bordetella pertussis</i> Tohama I in Murine Models of Respiratory Tract Infection. Infection and Immunity, 1999, 67, 6109-6118.	1.0	88
129	Probing the Function of <i>Bordetella bronchiseptica</i> Adenylate Cyclase Toxin by Manipulating Host Immunity. Infection and Immunity, 1999, 67, 1493-1500.	1.0	126
130	The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Molecular Microbiology, 1998, 28, 945-959.	1.2	171
131	An IgG3-IL-2 Fusion Protein Recognizing a Murine B Cell Lymphoma Exhibits Effective Tumor Imaging and Antitumor Activity. Journal of Interferon and Cytokine Research, 1998, 18, 597-607.	0.5	20
132	Antibody-IL-2 fusion proteins: A novel strategy for immune potentiation. Human Antibodies, 1997, 8, 106-118.	0.6	13
133	An IgG3-IL-2 fusion protein has higher affinity than hrIL-2 for the IL-2R alpha subunit: Real time measurement of ligand binding. Molecular Immunology, 1996, 33, 1007-1014.	1.0	11
134	Engineering Novel Antibody Molecules. Chemical Immunology and Allergy, 1996, 65, 129-158.	1.7	2
135	An IgG3-IL2 fusion protein activates complement, binds Fcl̂ ³ RI, generates LAK activity and shows enhanced binding to the high affinity IL-2R. Immunotechnology: an International Journal of Immunological Engineering, 1995, 1, 95-105.	2.4	29