Fang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1865218/publications.pdf

Version: 2024-02-01

218677 276875 1,982 67 26 41 citations h-index g-index papers 67 67 67 2008 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Research, 2013, 47, 6122-6129.	11.3	164
2	Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d. Water Research, 2019, 164, 114935.	11.3	95
3	Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria. Applied Microbiology and Biotechnology, 2014, 98, 10211-10221.	3.6	83
4	Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles. Biosensors and Bioelectronics, 2018, 108, 20-26.	10.1	80
5	Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration. Journal of Membrane Science, 2012, 417-418, 28-33.	8.2	74
6	Iron-carbon composite from carbonization of iron-crosslinked sodium alginate for Cr(VI) removal. Chemical Engineering Journal, 2019, 362, 21-29.	12.7	66
7	Free acetic acid as the key factor for the inhibition of hydrogenotrophic methanogenesis in mesophilic mixed culture fermentation. Bioresource Technology, 2018, 264, 17-23.	9.6	55
8	Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors. Journal of Cleaner Production, 2018, 202, 536-542.	9.3	54
9	Hydrogen supersaturation in thermophilic mixed culture fermentation. International Journal of Hydrogen Energy, 2012, 37, 17809-17816.	7.1	51
10	High-purity propionate production from glycerol in mixed culture fermentation. Bioresource Technology, 2016, 219, 659-667.	9.6	49
11	Alkali production from bipolar membrane electrodialysis powered by microbial fuel cell and application for biogas upgrading. Applied Energy, 2013, 103, 428-434.	10.1	47
12	High-rate anaerobic decolorization of methyl orange from synthetic azo dye wastewater in a methane-based hollow fiber membrane bioreactor. Journal of Hazardous Materials, 2020, 388, 121753.	12.4	44
13	In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor. Applied Microbiology and Biotechnology, 2013, 97, 10233-10240.	3.6	43
14	A modified metabolic model for mixed culture fermentation with energy conserving electron bifurcation reaction and metabolite transport energy. Biotechnology and Bioengineering, 2013, 110, 1884-1894.	3.3	43
15	Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide. Water Research, 2019, 159, 87-94.	11.3	43
16	Caproate production from xylose by mesophilic mixed culture fermentation. Bioresource Technology, 2020, 308, 123318.	9.6	43
17	Enhancement of acetate productivity in a thermophilic ($55\hat{A}\hat{A}^{\circ}$ C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation. Applied Microbiology and Biotechnology, 2017, 101, 2619-2627.	3.6	39
18	Simultaneous production of acetate and methane from glycerol by selective enrichment of hydrogenotrophic methanogens in extreme-thermophilic (70 $\hat{A}^{\circ}C$) mixed culture fermentation. Applied Energy, 2015, 148, 326-333.	10.1	38

#	Article	IF	Citations
19	Stable acetate production in extreme-thermophilic ($70\hat{A}^{\circ}$ C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens. Scientific Reports, 2014, 4, 5268.	3.3	38
20	Characterization of microbial compositions in a thermophilic chemostat of mixed culture fermentation. Applied Microbiology and Biotechnology, 2016, 100, 1511-1521.	3.6	38
21	Synergetic alginate conversion by a microbial consortium of hydrolytic bacteria and methanogens. Water Research, 2019, 163, 114892.	11.3	36
22	Different DHA or EPA production responses to nutrient stress in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. Science of the Total Environment, 2019, 656, 140-149.	8.0	36
23	Impacts of medium composition and applied current on recovery of volatile fatty acids during coupling of electrodialysis with an anaerobic digester. Journal of Cleaner Production, 2019, 207, 483-489.	9.3	34
24	Production of chemicals in thermophilic mixed culture fermentation: mechanism and strategy. Critical Reviews in Environmental Science and Technology, 2020, 50, 1-30.	12.8	34
25	Hydraulic retention time affects stable acetate production from tofu processing wastewater in extreme-thermophilic (70 \hat{A}° C) mixed culture fermentation. Bioresource Technology, 2016, 216, 722-728.	9.6	32
26	Valuable biochemical production in mixed culture fermentation: fundamentals and process coupling. Applied Microbiology and Biotechnology, 2017, 101, 6575-6586.	3.6	32
27	Electricity production and microbial characterization of thermophilic microbial fuel cells. Bioresource Technology, 2017, 243, 512-519.	9.6	27
28	Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor. Journal of Cleaner Production, 2018, 187, 165-170.	9.3	27
29	Mass transfer affects reactor performance, microbial morphology, and community succession in the methane-dependent denitrification and anaerobic ammonium oxidation co-culture. Science of the Total Environment, 2019, 651, 291-297.	8.0	27
30	Hydrogen supersaturation in extreme-thermophilic (70 \hat{A}° C) mixed culture fermentation. Applied Energy, 2013, 109, 213-219.	10.1	26
31	The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes. Applied Microbiology and Biotechnology, 2015, 99, 7925-7936.	3.6	25
32	The glucose metabolic distribution in thermophilic (55°C) mixed culture fermentation: A chemostat study. International Journal of Hydrogen Energy, 2015, 40, 919-926.	7.1	24
33	Hydrogen and carbon dioxide mixed culture fermentation in a hollow-fiber membrane biofilm reactor at 25†°C. Bioresource Technology, 2018, 249, 659-665.	9.6	24
34	No difference in inhibition among free acids of acetate, propionate and butyrate on hydrogenotrophic methanogen of Methanobacterium formicicum. Bioresource Technology, 2019, 294, 122237.	9.6	24
35	Decolorization by Caldicellulosiruptor saccharolyticus with dissolved hydrogen under extreme thermophilic conditions. Chemical Engineering Journal, 2015, 262, 847-853.	12.7	22
36	Microbial selenite reduction coupled to anaerobic oxidation of methane. Science of the Total Environment, 2019, 669, 168-174.	8.0	22

#	Article	IF	CITATIONS
37	A Novel Approach for Phosphorus Recovery and No Wasted Sludge in Enhanced Biological Phosphorus Removal Process with External COD Addition. Applied Biochemistry and Biotechnology, 2014, 172, 820-828.	2.9	21
38	Decolorization of Acid Orange 7 by extreme-thermophilic mixed culture. Bioresource Technology, 2019, 291, 121875.	9.6	21
39	Power to hydrogen-oxidizing bacteria: Effect of current density on bacterial activity and community spectra. Journal of Cleaner Production, 2020, 263, 121596.	9.3	20
40	Enhanced Methane Recovery from Waste-Activated Sludge by Alginate-Degrading Consortia: The Overlooked Role of Alginate in Extracellular Polymeric Substances. Environmental Science and Technology Letters, 2021, 8, 86-91.	8.7	17
41	Caproate production from xylose via the fatty acid biosynthesis pathway by genus Caproiciproducens dominated mixed culture fermentation. Bioresource Technology, 2022, 351, 126978.	9.6	17
42	The chemostat study of metabolic distribution in extreme-thermophilic (70°C) mixed culture fermentation. Applied Microbiology and Biotechnology, 2014, 98, 10267-10273.	3.6	16
43	Mixed culture fermentation of synthesis gas in the microfiltration and ultrafiltration hollow-fiber membrane biofilm reactors. Bioresource Technology, 2018, 267, 650-656.	9.6	15
44	Stimulation of methane production from benzoate with addition of carbon materials. Science of the Total Environment, 2020, 723, 138080.	8.0	15
45	Electricity production and microbial community in psychrophilic microbial fuel cells at 10°C. Bioresource Technology, 2020, 313, 123680.	9.6	15
46	Enrichment of hydrogen-oxidizing bacteria with nitrate recovery as biofertilizers in the mixed culture. Bioresource Technology, 2020, 313, 123645.	9.6	15
47	Identification of Extracellular Key Enzyme and Intracellular Metabolic Pathway in Alginate-Degrading Consortia via an Integrated Metaproteomic/Metagenomic Analysis. Environmental Science & Technology, 2021, 55, 16636-16645.	10.0	15
48	An internal-integrated RED/ED system for energy-saving seawater desalination: A model study. Energy, 2019, 170, 139-148.	8.8	14
49	Inhibitory effects of free propionic and butyric acids on the activities of hydrogenotrophic methanogens in mesophilic mixed culture fermentation. Bioresource Technology, 2019, 272, 458-464.	9.6	14
50	Application of iron-crosslinked sodium alginate for efficient sulfide control and reduction of oilfield produced water. Water Research, 2019, 154, 12-20.	11.3	13
51	Elucidating the production and inhibition of melanoidins products on anaerobic digestion after thermal-alkaline pretreatment. Journal of Hazardous Materials, 2022, 424, 127377.	12.4	12
52	Microbial dynamics of the extreme-thermophilic ($70\hat{A}\hat{A}^{\circ}C$) mixed culture for hydrogen production in a chemostat. International Journal of Hydrogen Energy, 2016, 41, 11072-11080.	7.1	11
53	Ammonium level induces high purity propionate production in mixed culture glucose fermentation. RSC Advances, 2017, 7, 518-525.	3.6	11
54	Highly Selective Fermentation of Waste-Activated Sludge by Alginate-Degrading Consortia. ACS ES&T Engineering, 2021, 1, 1606-1617.	7.6	10

#	Article	IF	CITATIONS
55	Controlling volatile fatty acids production from waste activated sludge by an alginate-degrading consortium. Science of the Total Environment, 2022, 806, 150730.	8.0	10
56	The chemostat metabolite spectra of alkaline mixed culture fermentation under mesophilic, thermophilic, and extreme-thermophilic conditions. Bioresource Technology, 2018, 249, 322-327.	9.6	8
57	Two-stage enrichment of hydrogen-oxidizing bacteria as biofertilizers. Chemosphere, 2021, 266, 128932.	8.2	8
58	Acetate and electricity generation from methane in conductive fiber membrane- microbial fuel cells. Science of the Total Environment, 2022, 804, 150147.	8.0	8
59	Why is the ratio of H2/acetate over 2 in glucose fermentation by Caldicellulosiruptor saccharolyticus?. International Journal of Hydrogen Energy, 2013, 38, 11241-11247.	7.1	7
60	In situ prepared algae-supported iron sulfide to remove hexavalent chromium. Environmental Pollution, 2021, 274, 115831.	7. 5	6
61	Decoupling mechanism of Acid Orange 7 decolorization and sulfate reduction by a Caldanaerobacter dominated extreme-thermophilic consortium. Journal of Hazardous Materials, 2021, 419, 126498.	12.4	6
62	Electricity production and key exoelectrogens in a mixed-culture psychrophilic microbial fuel cell at 4°C. Applied Microbiology and Biotechnology, 2022, 106, 4801-4811.	3.6	6
63	Evaluation of the after-effects of cyanobacterial cell removal and lysis by photocatalysis using Ag/AgBr/TiO2. Water Science and Technology, 2014, 70, 828-834.	2.5	5
64	Impact of fat and muscle in energy dispersive X-ray diffraction-based identification of heroin using multivariate data analysis. Journal of Chemometrics, 2011, 25, 631-635.	1.3	4
65	Acid Orange 7 degradation using methane as the sole carbon source and electron donor. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	3
66	Anaerobic Thermophilic Mixed Culture Fermentation Processes. , 2019, , 437-460.		0
67	Use of Syngas for the Production of Organic Molecules by Fermentation. , 2019, , 491-509.		0