
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1865127/publications.pdf Version: 2024-02-01

SHAOUIN CHEN

#	Article	IF	CITATIONS
1	A review of actively moving polymers in textile applications. Journal of Materials Chemistry, 2010, 20, 3346.	6.7	239
2	Two-way shape memory effect in polymer laminates. Materials Letters, 2008, 62, 4088-4090.	1.3	137
3	Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer, 2009, 50, 4424-4428.	1.8	135
4	Hyperbranched polymers from A ₂ + B ₃ strategy: recent advances in description and control of fine topology. Polymer Chemistry, 2016, 7, 3643-3663.	1.9	134
5	Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties. Journal of Materials Chemistry A, 2015, 3, 2924-2933.	5.2	114
6	Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Materials Science and Engineering C, 2016, 61, 79-84.	3.8	113
7	Triple shape memory effect in multiple crystalline polyurethanes. Polymers for Advanced Technologies, 2010, 21, 377-380.	1.6	111
8	High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique. Polymer, 2011, 52, 1711-1715.	1.8	92
9	Facile preparation and synergistic antibacterial effect of three-component Cu/TiO2/CS nanoparticles. Journal of Materials Chemistry, 2012, 22, 9092.	6.7	82
10	Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane. Polymer, 2010, 51, 240-248.	1.8	76
11	Effect of molecular weight on shape memory behavior in polyurethane films. Polymer International, 2007, 56, 1128-1134.	1.6	74
12	Effect of SSL and HSC on morphology and properties of PHA based SMPU synthesized by bulk polymerization method. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 444-454.	2.4	66
13	New stimulus-responsive shape-memory polyurethanes capable of UV light-triggered deformation, hydrogen bond-mediated fixation, and thermal-induced recovery. Journal of Materials Chemistry A, 2017, 5, 14514-14518.	5.2	66
14	Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nature Communications, 2019, 10, 2705.	5.8	60
15	Supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Materials Letters, 2009, 63, 1462-1464.	1.3	58
16	Citric Acid/Cysteine-Modified Cellulose-Based Materials: Green Preparation and Their Applications in Anticounterfeiting, Chemical Sensing, and UV Shielding. ACS Sustainable Chemistry and Engineering, 2017, 5, 11387-11394.	3.2	55
17	Intramolecular Cyclization in A ₂ + B ₃ Polymers via Step-Wise Polymerization Resulting in a Highly Branched Topology: Quantitative Determination of Cycles by Combined NMR and SEC Analytics. Macromolecules, 2012, 45, 6185-6195.	2.2	51
18	Nano-Li3V2(PO4)3 enwrapped into reduced graphene oxide sheets for lithium-ion batteries. Journal of Power Sources, 2014, 265, 104-109.	4.0	46

#	Article	IF	CITATIONS
19	Development of zwitterionic copolymers with multi-shape memory effects and moisture-sensitive shape memory effects. Journal of Materials Chemistry B, 2015, 3, 6645-6655.	2.9	43
20	Terminal Index: A New Way for Precise Description of Topologic Structure of Highly Branched Polymers Derived from A ₂ + B ₃ Stepwise Polymerization. Journal of Physical Chemistry B, 2014, 118, 3441-3450.	1.2	42
21	Development of supramolecular liquid-crystalline polyurethane complexes exhibiting triple-shape functionality using a one-step programming process. Journal of Materials Chemistry A, 2014, 2, 10169-10181.	5.2	41
22	Drug Self-Assembled Delivery System with Dual Responsiveness for Cancer Chemotherapy. ACS Biomaterials Science and Engineering, 2016, 2, 2347-2354.	2.6	39
23	Study on the moisture absorption of pyridine containing polyurethane for moisture-responsive shape memory effects. Journal of Materials Science, 2011, 46, 6581-6588.	1.7	38
24	Development of humidity-responsive self-healing zwitterionic polyurethanes for renewable shape memory applications. RSC Advances, 2017, 7, 31525-31534.	1.7	37
25	Insights into liquid-crystalline shape-memory polyurethane composites based on an amorphous reversible phase and hexadecyloxybenzoic acid. Journal of Materials Chemistry C, 2014, 2, 1041-1049.	2.7	36
26	Transparent, highly-stretchable, adhesive, and ionic conductive composite hydrogel for biomimetic skin. Journal of Materials Science, 2021, 56, 2725-2737.	1.7	35
27	Electroactive twoâ€way shape memory polymer laminates. Polymer Composites, 2015, 36, 439-444.	2.3	34
28	Highly stretchable, self-healing, and 3D printing prefabricatable hydrophobic association hydrogels with the assistance of electrostatic interaction. Polymer Chemistry, 2020, 11, 4741-4748.	1.9	34
29	Fourier transform infrared study of supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Polymer International, 2010, 59, 529-538.	1.6	33
30	Pyridine type zwitterionic polyurethane with both multi-shape memory effect and moisture-sensitive shape memory effect for smart biomedical application. Polymer Chemistry, 2016, 7, 5773-5782.	1.9	33
31	Chemically-crosslinked zwitterionic polyurethanes with excellent thermally-induced multi-shape memory effect and moisture-induced shape memory effect. Polymer, 2018, 148, 119-126.	1.8	31
32	Development of liquid-crystalline shape-memory polyurethane composites based on polyurethane with semi-crystalline reversible phase and hexadecyloxybenzoic acid for self-healing applications. Journal of Materials Chemistry C, 2014, 2, 4203-4212.	2.7	28
33	Citrate-based fluorophore-modified cellulose nanocrystals as a biocompatible fluorescent probe for detecting ferric ions and intracellular imaging. Carbohydrate Polymers, 2019, 224, 115198.	5.1	28
34	Effect of MDI–BDO hard segment on pyridine-containing shape memory polyurethanes. Journal of Materials Science, 2011, 46, 5294-5304.	1.7	27
35	Studies of the moistureâ€sensitive shape memory effect of pyridineâ€containing polyurethanes. Polymer International, 2012, 61, 314-320.	1.6	27
36	Acid leavable Unimolecular Micelles from Amphiphilic Star Copolymers for Triggered Release of Anticancer Drugs. Macromolecular Bioscience, 2017, 17, 1600258.	2.1	27

#	Article	IF	CITATIONS
37	Development of shape memory polyurethane based on polyethylene glycol and liquefied 4,4′â€diphenylmethane diisocyanate using a bulk method for biomedical applications. Polymer International, 2015, 64, 477-485.	1.6	26
38	Novel zwitterionic polyurethanes with good biocompatibility and antibacterial activity. Materials Letters, 2015, 145, 174-176.	1.3	26
39	New insights into multi-shape memory behaviours and liquid crystalline properties of supramolecular polyurethane complexes based on pyridine-containing polyurethane and 4-octyldecyloxybenzoic acid. Journal of Materials Chemistry A, 2015, 3, 19525-19538.	5.2	25
40	Molecularly imprinted polymers synthesized using reduction-cleavable hyperbranched polymers for doxorubicin hydrochloride with enhanced loading properties and controlled release. Journal of Materials Science, 2016, 51, 9367-9383.	1.7	25
41	Hierarchically porous sponge for oily water treatment: Facile fabrication by combination of particulate templates and thermally induced phase separation method. Journal of Industrial and Engineering Chemistry, 2018, 62, 192-196.	2.9	24
42	3D Printable, Biomimetic Adhesive, and Self-healing Acrylic Elastomers for Customized Attachable Strain Sensor. Chemical Engineering Journal, 2022, 430, 133111.	6.6	24
43	A New Type of Photo-Thermo Staged-Responsive Shape-Memory Polyurethanes Network. Polymers, 2017, 9, 287.	2.0	23
44	Development of Polyhydroxyalkanoate-Based Polyurethane with Water-Thermal Response Shape-Memory Behavior as New 3D Elastomers Scaffolds. Polymers, 2019, 11, 1030.	2.0	23
45	Thermal- and light-responsive programmable shape-memory behavior of liquid crystalline polyurethanes with pendant photosensitive groups. Journal of Materials Chemistry A, 2021, 9, 15087-15094.	5.2	23
46	Topological analysis and intramolecular cyclic feature evaluation of polymers derived from A _m + B _n step-growth polymerization. Polymer Chemistry, 2015, 6, 909-916.	1.9	22
47	Development of Nontoxic Biodegradable Polyurethanes Based on Polyhydroxyalkanoate and L-lysine Diisocyanate with Improved Mechanical Properties as New Elastomers Scaffolds. Polymers, 2019, 11, 1927.	2.0	22
48	A facile approach for the preparation of liquid crystalline polyurethane for light-responsive actuator films with self-healing performance. Materials Chemistry Frontiers, 2021, 5, 3192-3200.	3.2	22
49	Co-delivery of 5-fluorouracil and miRNA-34a mimics by host-guest self-assembly nanocarriers for efficacious targeted therapy in colorectal cancer patient-derived tumor xenografts. Theranostics, 2021, 11, 2475-2489.	4.6	22
50	Development of liquid crystalline polyurethane composites with stage-responsive shape memory effects. Polymer Chemistry, 2018, 9, 576-583.	1.9	20
51	STUDIES ON MORPHOLOGY AND PROPERTIES OF PHMA LIQUIFIED MDI/BDO SHAPE MEMORY POLYURETHANES (PU). Acta Polymerica Sinica, 2006, 006, 1-5.	0.0	20
52	Reduction-cleavable hyperbranched polymers with limited intramolecular cyclization via click chemistry. Journal of Polymer Science Part A, 2015, 53, 2374-2380.	2.5	19
53	A new strategy for designing multifunctional shape memory polymers with amine-containing polyurethanes. Journal of Materials Science, 2016, 51, 9131-9144.	1.7	19
54	Recyclable and reprocessable epoxy-polyhedral oligomeric silsesquioxane (POSS)/mesogenic azobenzene/poly (ethylene-co-vinyl acetate) composites with thermal- and light-responsive programmable shape-memory performance. Chemical Engineering Journal, 2022, 428, 132609.	6.6	19

#	Article	IF	CITATIONS
55	Shape Memory Polyurethanes Based on Zwitterionic Hard Segments. Polymers, 2017, 9, 465.	2.0	17
56	Reduction-responsive amphiphilic star copolymers with long-chain hyperbranched poly(ε-caprolactone) core and disulfide bonds for trigger release of anticancer drugs. European Polymer Journal, 2018, 108, 364-372.	2.6	17
57	Synthesis and characterization of siloxane sulfobetaine antimicrobial agents. Surface Science, 2011, 605, L25-L28.	0.8	16
58	Synthesis and stimulus-responsive micellization of a well-defined H-shaped terpolymer. Polymer Chemistry, 2012, 3, 3330.	1.9	16
59	Amphiphilic polymer–drug conjugates based on acid-sensitive 100% hyperbranched polyacetals for cancer therapy. Journal of Materials Science, 2017, 52, 9430-9440.	1.7	16
60	Three-dimensional Na3V2(PO4)3/carbon nanofiber networks prepared by electrospinning as self-standing cathodes for high performance Na-ion batteries. Materials Letters, 2018, 232, 153-156.	1.3	16
61	Studies on the thermal stability of polyurethanes containing pyridine: Thermogravimetric analysis. Thermochimica Acta, 2012, 543, 281-287.	1.2	15
62	Construction of unconventional fluorescent poly(amino ester) polyols as sensing platform for label-free detection of Fe3+ ions and l-cysteine. Journal of Materials Science, 2018, 53, 15717-15725.	1.7	15
63	Shape memory materials based on adamantane-containing polyurethanes. RSC Advances, 2018, 8, 25584-25591.	1.7	15
64	AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor with Polarized P(VDF-TrFE) Ferroelectric Polymer Gating. Scientific Reports, 2015, 5, 14092.	1.6	14
65	Reduction-responsive dithiomaleimide-based polymeric micelles for controlled anti-cancer drug delivery and bioimaging. Polymer Chemistry, 2017, 8, 7160-7168.	1.9	14
66	Tunable Shape Memory Polyurethane Networks Cross-Linked by 1,3,5,7-Tetrahydroxyadamantane. Macromolecular Research, 2018, 26, 1035-1041.	1.0	14
67	Preparation of a P(THF-co-PO)-b-PB-b-P(THF-co-PO) triblock copolymer via cationic ring-opening polymerization and its use as a thermoset polymer. RSC Advances, 2015, 5, 66073-66081.	1.7	13
68	Tunable intramolecular cyclization and glass transition temperature of hyperbranched polymers by regulating monomer reactivity. European Polymer Journal, 2017, 96, 474-483.	2.6	13
69	Novel photo-thermal staged-responsive supramolecular shape memory polyurethane complex. Polymer, 2019, 179, 121671.	1.8	13
70	Citrate-based fluorophores in polymeric matrix by easy and green in situ synthesis for full-band UV shielding and emissive transparent display. Journal of Materials Science, 2019, 54, 1236-1247.	1.7	13
71	On "modulus shift―and thermorheological complexity in polyolefins. Rheologica Acta, 2015, 54, 695-704.	1.1	12
72	A facile photo-polymerization method for reconfigurable shape memory polymers. Materials Letters, 2019, 254, 214-217.	1.3	12

#	Article	IF	CITATIONS
73	Copolymerization strategy to prepare polymethyl methacrylate-based copolymer with broad-band ultraviolet shielding and luminescent down-shifting properties. Journal of Materials Science, 2019, 54, 14624-14633.	1.7	12
74	Design of Conductive Binders for LiFePO ₄ Cathodes with Long-Term Cycle Life. ACS Sustainable Chemistry and Engineering, 2021, 9, 13277-13286.	3.2	11
75	The Effect of 4-Octyldecyloxybenzoic Acid on Liquid-Crystalline Polyurethane Composites with Triple-Shape Memory and Self-Healing Properties. Materials, 2016, 9, 792.	1.3	10
76	Facile water-assisted permanent shape reconfiguration of zwitterionic polyurethanes. Polymer, 2018, 158, 25-31.	1.8	10
77	An Hâ€shaped polymer bonding βâ€cyclodextrin at branch points: Synthesis and influences of attached βâ€cyclodextrins on physical properties. Journal of Polymer Science Part A, 2013, 51, 1405-1416.	2.5	9
78	A simple and general method for the determination of content of terminal groups in hyperbranched polymers derived from ABn monomers. Polymer Testing, 2014, 35, 28-33.	2.3	9
79	Development of a new shape-memory polymer in the form of microspheres. Materials Letters, 2018, 225, 24-27.	1.3	9
80	Development of supramolecular shape-memory polyurethanes based on Cu(II)–pyridine coordination interactions. Journal of Materials Science, 2019, 54, 5136-5148.	1.7	9
81	Rational Design of Effective Binders for LiFePO4 Cathodes. Polymers, 2021, 13, 3146.	2.0	9
82	Synergistic effects of zwitterionic segments and a silane coupling agent on zwitterionic shape memory polyurethanes. RSC Advances, 2017, 7, 42320-42328.	1.7	9
83	A citric acid/cysteine based bioadditive for plasticization and enhancing <scp>UV</scp> shielding of poly(vinyl chloride). Polymer International, 2022, 71, 227-231.	1.6	8
84	Ionic Liquid-Decorated Copolymer Binders for Silicon/Graphite Anodes with Enhanced Rate Capability and Excellent Cycle Stability. ACS Applied Energy Materials, 2021, 4, 12709-12717.	2.5	8
85	Disulfide bonds-containing amphiphilic conetworks with tunable reductive-cleavage. RSC Advances, 2016, 6, 36568-36575.	1.7	7
86	Thermal stability assessment of 4,4′-azo-bis(1,2,4-triazolone) (ZTO) and its salts by accelerating rate calorimeter (ARC). Journal of Thermal Analysis and Calorimetry, 2018, 132, 563-569.	2.0	7
87	Synthesis of zwitterionic acrylamide copolymers for biocompatible applications. Journal of Bioactive and Compatible Polymers, 2018, 33, 3-16.	0.8	7
88	Thermal stability assessment of a new energetic Ca(II) compound with ZTO ligand by DSC and ARC. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1873-1882.	2.0	7
89	New zwitterionic polyurethanes containing pendant carboxyl-pyridinium with shape memory, shape reconfiguration, and self-healing properties. Polymer, 2019, 180, 121727.	1.8	7
90	Biodegradable and water-responsive shape memory PHA-based polyurethane for tissue engineering. Materials Today: Proceedings, 2019, 16, 1475-1479.	0.9	7

#	Article	IF	CITATIONS
91	Preparation of thermostable and compatible citrate-based polyesters for enhancing the ultraviolet shielding performance of thermoplastic resin. Polymer Chemistry, 2021, 12, 1939-1949.	1.9	7
92	Superhydrophobicity of Self-Organized Surfaces of Polymer Nanowire Arrays Fabricated by a Nano-Injection Moulding Technique. Journal of Thermal Science and Technology, 2011, 6, 204-209.	0.6	6
93	A shape memory copolymer based on 2-(dimethylamino)ethyl methacrylate and methyl allyl polyethenoxy ether for potential biological applications. RSC Advances, 2015, 5, 44435-44446.	1.7	6
94	Influence of the spacer on the phase behaviors of side-chain liquid crystalline copolymers based on triphenylene discotic mesogen unit. RSC Advances, 2016, 6, 38790-38796.	1.7	6
95	Study on the moisture absorption of zwitterionic copolymers for moistureâ€sensitive shape memory applications. Polymers for Advanced Technologies, 2017, 28, 1464-1472.	1.6	6
96	The effect of liquid crystal fillers on structure and properties of liquid crystalline shape memory polyurethane composites II: 4-hexadecyloxybenzoic acid. Journal of Materials Science, 2017, 52, 2628-2641.	1.7	6
97	The impact of liquid crystal fillers on structure and properties of liquid-crystalline shape-memory polyurethane composites I: 4-dodecyloxybenzoic acid. Journal of Materials Science, 2016, 51, 10229-10244.	1.7	5
98	Crystalline iceplant-like nano-NaVPO ₄ F@graphene as an intercalation-type anode material for sodium-ion batteries. Chemical Communications, 2020, 56, 2479-2482.	2.2	5
99	Exploring the Biocompatibility of Zwitterionic Copolymers for Controlling Macrophage Phagocytosis of Bacteria. Macromolecular Bioscience, 2016, 16, 1714-1722.	2.1	4
100	A novel adamantane-based polyurethane with shape memory effect. Materials Letters, 2018, 229, 44-47.	1.3	4
101	A Novel 2,6-Diaminopyridine-base Polymer with Thermo-/Water-responsive Shape Memory Effect. Materials Today: Proceedings, 2019, 16, 1548-1553.	0.9	4
102	Preparation of 2â€(dimethylamino) ethyl methacrylate copolymer micelles for shape memory materials. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
103	"A~A+B3~―strategy to construct redox-responsive core-crosslinked copolymers as potential drug carrier. Reactive and Functional Polymers, 2019, 138, 122-128.	2.0	3
104	Synthesis and phase behaviour of a poly{2,5-bis[(<i>p</i> -ethoxyphenoxy) carbonyl] benzyl acrylate}-based mesogen-jacketed liquid crystalline copolymer. Liquid Crystals, 2011, 38, 657-662.	0.9	2
105	Facile preparation of shape memory polyurethanes by polyurethanes blending. Journal of Applied Polymer Science, 2013, 130, 4047-4053.	1.3	2
106	Shape memory polyurethanes with UV light-triggered deformation and water-induced recovery. Materials Today: Proceedings, 2019, 16, 1436-1441.	0.9	2
107	Preparation of nano-VBO3 on graphene as anode material for lithium-ion batteries. Materials Letters, 2019, 241, 60-63.	1.3	1
108	A novel zwitterionic polymer binder with enhanced ionic conductivity for water-processable LiFePO ₄ cathodes. New Journal of Chemistry, 2021, 45, 11130-11135.	1.4	1

#	Article	IF	CITATIONS
109	Effect of diisocyanate on pyridine containing shape memory polyurethanes based on <i>N</i> , <i>N</i> â€bis(2â€hydroxylethyl)isonicotinamide. Journal of Applied Polymer Science, 2014, 131, .	1.3	0