
Yongki Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1864307/publications.pdf Version: 2024-02-01

YONCKI CHOL

#	Article	IF	CITATIONS
1	Single-Molecule Force Probing of RGD-Binding Integrins on Pancreatic Cancer Cells. ACS Applied Materials & Interfaces, 2022, 14, 7671-7679.	4.0	8
2	Modified Bovine Milk Exosomes for Doxorubicin Delivery to Triple-Negative Breast Cancer Cells. ACS Applied Bio Materials, 2022, 5, 2163-2175.	2.3	31
3	Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow. STAR Protocols, 2022, 3, 101376.	0.5	3
4	Acquired αSMA Expression in Pericytes Coincides with Aberrant Vascular Structure and Function in Pancreatic Ductal Adenocarcinoma. Cancers, 2022, 14, 2448.	1.7	8
5	Molecular diffusion analysis of dynamic blood flow and plasma separation driven by self-powered microfluidic devices. Biomicrofluidics, 2021, 15, 034106.	1.2	1
6	Different Single-Enzyme Conformational Dynamics upon Binding Hydrolyzable or Nonhydrolyzable Ligands. Journal of Physical Chemistry B, 2021, 125, 5750-5756.	1.2	5
7	Dynamic cellular biomechanics in responses to chemotherapeutic drug in hypoxia probed by atomic force spectroscopy. Oncotarget, 2021, 12, 1165-1177.	0.8	6
8	Targeted Polymeric Nanoparticles for Drug Delivery to Hypoxic, Triple-Negative Breast Tumors. ACS Applied Bio Materials, 2021, 4, 1450-1460.	2.3	29
9	Targeting Estrogen Receptor-Positive Breast Microtumors with Endoxifen-Conjugated, Hypoxia-Sensitive Polymersomes. ACS Omega, 2021, 6, 27654-27667.	1.6	6
10	Selective Manipulation of Biomolecules with Insulator-Based Dielectrophoretic Tweezers. ACS Applied Nano Materials, 2020, 3, 797-805.	2.4	13
11	Size-Tunable Metal–Organic Framework-Coated Magnetic Nanoparticles for Enzyme Encapsulation and Large-Substrate Biocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 41794-41801.	4.0	47
12	Hypoxia-Responsive, Polymeric Nanocarriers for Targeted Drug Delivery to Estrogen Receptor-Positive Breast Cancer Cell Spheroids. Molecular Pharmaceutics, 2020, 17, 4312-4322.	2.3	32
13	Targeting the Tumor Core: Hypoxia-Responsive Nanoparticles for the Delivery of Chemotherapy to Pancreatic Tumors. Molecular Pharmaceutics, 2020, 17, 2849-2863.	2.3	40
14	Protein Detection Using Quadratic Fit Analysis near the Dirac Point of Graphene Field-Effect Biosensors. ACS Applied Electronic Materials, 2020, 2, 913-919.	2.0	10
15	Echogenic exosomes as ultrasound contrast agents. Nanoscale Advances, 2020, 2, 3411-3422.	2.2	11
16	Enzyme Immobilization on Graphite Oxide (GO) Surface via One-Pot Synthesis of GO/Metal–Organic Framework Composites for Large-Substrate Biocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 23119-23126.	4.0	45
17	Electronic Structure and Properties of Lithium-Rich Complex Oxides. ACS Applied Electronic Materials, 2019, 1, 75-81.	2.0	10
18	Size-Transformable, Multifunctional Nanoparticles from Hyperbranched Polymers for Environment-Specific Therapeutic Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 1354-1365.	2.6	26

Үолскі Сноі

#	Article	IF	CITATIONS
19	Electronic structure, polaron formation, and functional properties in transition-metal tungstates. RSC Advances, 2018, 8, 4191-4196.	1.7	33
20	Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors. Colloids and Surfaces B: Biointerfaces, 2018, 163, 225-235.	2.5	37
21	Acoustic Characterization of Echogenic Polymersomes Prepared From Amphiphilic Block Copolymers. Ultrasound in Medicine and Biology, 2018, 44, 447-457.	0.7	8
22	Insights on the Structure, Molecular Weight and Activity of an Antibacterial Protein–Polymer Hybrid. ChemPhysChem, 2018, 19, 651-658.	1.0	8
23	Bioelectronics at the Single Molecule Level. , 2018, , .		0
24	Nucleus-Targeted, Echogenic Polymersomes for Delivering a Cancer Stemness Inhibitor to Pancreatic Cancer Cells. Biomacromolecules, 2018, 19, 4122-4132.	2.6	27
25	Real-time tracking of single-molecule collagenase on native collagen and partially structured collagen-mimic substrates. Chemical Communications, 2018, 54, 10248-10251.	2.2	1
26	Probing the structural basis and adsorption mechanism of an enzyme on nano-sized protein carriers. Nanoscale, 2017, 9, 3512-3523.	2.8	34
27	Real-time monitoring of conformational transitions of single-molecule histone deacetylase 8 with nanocircuits. Chemical Communications, 2017, 53, 3307-3310.	2.2	3
28	Nuclear Localizing Peptide-Conjugated, Redox-Sensitive Polymersomes for Delivering Curcumin and Doxorubicin to Pancreatic Cancer Microtumors. Molecular Pharmaceutics, 2017, 14, 1916-1928.	2.3	44
29	Quantitative measurements of dielectrophoresis in a nanoscale electrode array with an atomic force microscopy. Applied Physics Letters, 2017, 110, 203701.	1.5	3
30	Electronic Detection of Single Cancer Cells with Graphene Field Effect Transistors. Biophysical Journal, 2017, 112, 461a.	0.2	1
31	Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths. Biosensors, 2016, 6, 29.	2.3	12
32	Hypoxia Responsive, Tumor Penetrating Lipid Nanoparticles for Delivery of Chemotherapeutics to Pancreatic Cancer Cell Spheroids. Bioconjugate Chemistry, 2016, 27, 1830-1838.	1.8	60
33	Prostate-Specific Membrane Antigen Targeted Polymersomes for Delivering Mocetinostat and Docetaxel to Prostate Cancer Cell Spheroids. ACS Omega, 2016, 1, 952-962.	1.6	27
34	Hypoxia-Responsive Polymersomes for Drug Delivery to Hypoxic Pancreatic Cancer Cells. Biomacromolecules, 2016, 17, 2507-2513.	2.6	110
35	Acridine Orange Conjugated Polymersomes for Simultaneous Nuclear Delivery of Gemcitabine and Doxorubicin to Pancreatic Cancer Cells. Bioconjugate Chemistry, 2016, 27, 762-771.	1.8	28
36	Observing Lysozyme's Closing and Opening Motions by High-Resolution Single-Molecule Enzymology. ACS Chemical Biology, 2015, 10, 1495-1501.	1.6	21

Уомдкі Сноі

#	Article	IF	CITATIONS
37	Processive Incorporation of Deoxynucleoside Triphosphate Analogs by Single-Molecule DNA Polymerase I (Klenow Fragment) Nanocircuits. Journal of the American Chemical Society, 2015, 137, 9587-9594.	6.6	34
38	Single molecule recordings of lysozyme activity. Physical Chemistry Chemical Physics, 2013, 15, 14879.	1.3	9
39	Single Molecule Dynamic Transduction by Carbon Nanotube Circuits. Biophysical Journal, 2013, 104, 175a.	0.2	0
40	Dissecting Single-Molecule Signal Transduction in Carbon Nanotube Circuits with Protein Engineering. Nano Letters, 2013, 13, 625-631.	4.5	77
41	Electronic Measurements of Single-Molecule Catalysis by cAMP-Dependent Protein Kinase A. Journal of the American Chemical Society, 2013, 135, 7861-7868.	6.6	66
42	Electronic Measurements of Single-Molecule Processing by DNA Polymerase I (Klenow Fragment). Journal of the American Chemical Society, 2013, 135, 7855-7860.	6.6	41
43	Single-Molecule Dynamics of Lysozyme Processing Distinguishes Linear and Cross-Linked Peptidoglycan Substrates. Journal of the American Chemical Society, 2012, 134, 2032-2035.	6.6	45
44	Single-Molecule Lysozyme Dynamics Monitored by an Electronic Circuit. Science, 2012, 335, 319-324.	6.0	215
45	Ultrasensitive biosensing on the zepto-molar level. Biosensors and Bioelectronics, 2011, 26, 3386-3390.	5.3	5
46	A hybrid biofuel cell based on electrooxidation of glucose using ultra-small silicon nanoparticles. Biosensors and Bioelectronics, 2009, 24, 3103-3107.	5.3	30
47	Field-Effect Enzymatic Amplifying Detector with Picomolar Detection Limit. Analytical Chemistry, 2009, 81, 7123-7126.	3.2	21
48	Electro-oxidation of organic fuels catalyzed by ultrasmall silicon nanoparticles. Applied Physics Letters, 2008, 93, 164103.	1.5	6
49	Electronic composite of sulfonated tetrafluorethylene copolymer with potassium ferricyanide exhibiting room-temperature negative differential resistance. Applied Physics Letters, 2006, 89, 233116.	1.5	4
50	Two-dimensional crystal of several millimeter size spheres. Physica A: Statistical Mechanics and Its Applications, 2000, 281, 99-104.	1.2	7