
Zhao-Qing Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1864226/publications.pdf Version: 2024-02-01

ΖΗΛΟ-ΟΙΝΟ ΙΙΟ

#	Article	IF	CITATIONS
1	Legionella pneumophila modulates host energy metabolism by ADP-ribosylation of ADP/ATP translocases. ELife, 2022, 11, .	6.0	27
2	Legionella pneumophila regulates host cell motility by targeting Phldb2 with a 14-3-3ζ-dependent protease effector. ELife, 2022, 11, .	6.0	15
3	<i>Legionella pneumophila</i> temporally regulates the activity of ADP/ATP translocases by reversible ADPâ€ribosylation. , 2022, 1, 51-65.		7
4	<i>Coxiella burnetii</i> inhibits host immunity by a protein phosphatase adapted from glycolysis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	158
5	Maintaining home integrity by bacterial pathogens: Disruption for the sake of construction. Molecular Cell, 2022, 82, 1781-1783.	9.7	0
6	A set of shuttle plasmids for gene expression in Acinetobacter baumannii. PLoS ONE, 2021, 16, e0246918.	2.5	10
7	The metaeffector MesI regulates the activity of the Legionella effector SidI through direct protein–protein interactions. Microbes and Infection, 2021, 23, 104794.	1.9	15
8	Ubiquitination by a Mycobacterium protein that mimics E1 and E3 activities. EMBO Reports, 2021, 22, e53006.	4.5	1
9	A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice. Nature Communications, 2021, 12, 5479.	12.8	24
10	The <i>Legionella</i> Effector SdjA Is a Bifunctional Enzyme That Distinctly Regulates Phosphoribosyl Ubiquitination. MBio, 2021, 12, e0231621.	4.1	25
11	Modulation of phagosome phosphoinositide dynamics by a <i>Legionella</i> phosphoinositide 3â€kinase. EMBO Reports, 2021, 22, e51163.	4.5	20
12	Exploitation of the Host Ubiquitin System: Means by Legionella pneumophila. Frontiers in Microbiology, 2021, 12, 790442.	3.5	18
13	Regulation of Phosphoribosyl-Linked Serine Ubiquitination by Deubiquitinases DupA and DupB. Molecular Cell, 2020, 77, 164-179.e6.	9.7	91
14	Fic Proteins Inhibit the Activity of Topoisomerase IV by AMPylation in Diverse Bacteria. Frontiers in Microbiology, 2020, 11, 2084.	3.5	7
15	Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes. Nature Communications, 2020, 11, 5371.	12.8	86
16	Molecular Basis of Ubiquitination Catalyzed by the Bacterial Transglutaminase MavC. Advanced Science, 2020, 7, 2000871.	11.2	15
17	<i>Legionella pneumophila</i> regulates the activity of <scp>UBE</scp> 2N by deamidaseâ€mediated deubiquitination. EMBO Journal, 2020, 39, e102806.	7.8	38
18	Legionella effector MavC targets the Ube2N~Ub conjugate for noncanonical ubiquitination. Nature Communications, 2020, 11, 2365.	12.8	21

Zhao-Qing Luo

#	Article	IF	CITATIONS
19	Fluorescent Probes for Monitoring Serine Ubiquitination. Biochemistry, 2020, 59, 1309-1313.	2.5	6
20	The bacterial deubiquitinase Ceg23 regulates the association of Lys-63–linked polyubiquitin molecules on the Legionella phagosome. Journal of Biological Chemistry, 2020, 295, 1646-1657.	3.4	33
21	Structural insights into the mechanism and inhibition of transglutaminase-induced ubiquitination by the Legionella effector MavC. Nature Communications, 2020, 11, 1774.	12.8	15
22	The Two Deubiquitinating Enzymes from <i>Chlamydia trachomatis</i> Have Distinct Ubiquitin Recognition Properties. Biochemistry, 2020, 59, 1604-1617.	2.5	11
23	Interplay between bacterial deubiquitinase and ubiquitin E3 ligase regulates ubiquitin dynamics on Legionella phagosomes. ELife, 2020, 9, .	6.0	29
24	Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature, 2019, 572, 387-391.	27.8	91
25	AidB, a Novel Thermostable N -Acylhomoserine Lactonase from the Bacterium Bosea sp. Applied and Environmental Microbiology, 2019, 85, .	3.1	28
26	Methods for Noncanonical Ubiquitination and Deubiquitination Catalyzed by Legionella pneumophila Effector Proteins. Methods in Molecular Biology, 2019, 1921, 267-276.	0.9	5
27	Post-translational regulation of ubiquitin signaling. Journal of Cell Biology, 2019, 218, 1776-1786.	5.2	186
28	Methods to study phosphoribosylated ubiquitin ligation and removal. Methods in Enzymology, 2019, 618, 149-166.	1.0	0
29	Uncovering the Structural Basis of a New Twist in Protein Ubiquitination. Trends in Biochemical Sciences, 2019, 44, 467-477.	7.5	18
30	Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nature Microbiology, 2019, 4, 134-143.	13.3	44
31	Mechanism of inhibition of retromer transport by the bacterial effector RidL. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1446-E1454.	7.1	52
32	Regulation of the small GTPase Rab1 function by a bacterial glucosyltransferase. Cell Discovery, 2018, 4, 53.	6.7	28
33	Methods for NAD-Dependent Ubiquitination Catalyzed by Legionella pneumophila Effector Proteins. Methods in Molecular Biology, 2018, 1844, 33-38.	0.9	0
34	H3K14me3 genomic distributions and its regulation by KDM4 family demethylases. Cell Research, 2018, 28, 1118-1120.	12.0	13
35	Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. Nature, 2018, 557, 734-738.	27.8	84
36	Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector. Nature, 2018, 557, 729-733.	27.8	75

Zhao-Qing Luo

#	Article	IF	CITATIONS
37	The Herbal Compound Thymol Protects Mice From Lethal Infection by Salmonella Typhimurium. Frontiers in Microbiology, 2018, 9, 1022.	3.5	29
38	A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell Research, 2017, 27, 865-881.	12.0	70
39	The combination of osthole with baicalin protects mice from Staphylococcus aureus pneumonia. World Journal of Microbiology and Biotechnology, 2017, 33, 11.	3.6	20
40	A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nature Communications, 2017, 8, 14888.	12.8	236
41	Legionella and Coxiella effectors: strength in diversity and activity. Nature Reviews Microbiology, 2017, 15, 591-605.	28.6	212
42	Ubiquitin Chains Modified by the Bacterial Ligase SdeA Are Protected from Deubiquitinase Hydrolysis. Biochemistry, 2017, 56, 4762-4766.	2.5	16
43	Catch and arrest: exploiting the retromer by a Chlamydial effector. Signal Transduction and Targeted Therapy, 2017, 2, 17039.	17.1	3
44	Positive and Negative Regulation of the Master Metabolic Regulator mTORC1 by Two Families of Legionella pneumophila Effectors. Cell Reports, 2017, 21, 2031-2038.	6.4	54
45	Hijacking of the Host Ubiquitin Network by Legionella pneumophila. Frontiers in Cellular and Infection Microbiology, 2017, 7, 487.	3.9	72
46	A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin. PLoS Pathogens, 2017, 13, e1006186.	4.7	53
47	Molecular basis for the binding and modulation of V-ATPase by a bacterial effector protein. PLoS Pathogens, 2017, 13, e1006394.	4.7	53
48	Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature, 2016, 533, 120-124.	27.8	284
49	The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection. Infection and Immunity, 2016, 84, 2524-2533.	2.2	26
50	Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation. Science Signaling, 2016, 9, ra11.	3.6	26
51	Modulation of the host transcriptome by Coxiella burnetii nuclear effector Cbu1314. Microbes and Infection, 2016, 18, 336-345.	1.9	24
52	Inhibition of sortase A by chalcone prevents Listeria monocytogenes infection. Biochemical Pharmacology, 2016, 106, 19-29.	4.4	35
53	Cell biology and immunology lessons taught by Legionella pneumophila. Science China Life Sciences, 2016, 59, 3-10.	4.9	8
54	Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain Essential for Its Targeting to the Bacterial Phagosome. PLoS Pathogens, 2015, 11, e1004965.	4.7	81

ZHAO-QING LUO

#	Article	IF	CITATIONS
55	Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathogens, 2015, 11, e1005020.	4.7	169
56	Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15090-15095.	7.1	88
57	Sensing Cytosolic RpsL by Macrophages Induces Lysosomal Cell Death and Termination of Bacterial Infection. PLoS Pathogens, 2015, 11, e1004704.	4.7	21
58	A new way to detect the danger: Lysosomal cell death induced by a bacterial ribosomal protein. Journal of Nature and Science, 2015, 1, .	1.1	1
59	Two Residues Predominantly Dictate Functional Difference in Motility between Shewanella oneidensis Flagellins FlaA and FlaB. Journal of Biological Chemistry, 2014, 289, 14547-14559.	3.4	20
60	Bioluminescence Resonance Energy Transfer System for Measuring Dynamic Protein-Protein Interactions in Bacteria. MBio, 2014, 5, e01050-14.	4.1	8
61	The <i>Legionella</i> effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10538-10543.	7.1	98
62	A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization. Microbes and Infection, 2014, 16, 225-236.	1.9	47
63	Induction of caspase 3 activation by multipleLegionella pneumophilaâ€Dot/Icm substrates. Cellular Microbiology, 2013, 15, n/a-n/a.	2.1	42
64	Effector Translocation by the Legionella Dot/Icm Type IV Secretion System. Current Topics in Microbiology and Immunology, 2013, 376, 103-115.	1.1	8
65	Cell biology of infection by Legionella pneumophila. Microbes and Infection, 2013, 15, 157-167.	1.9	75
66	Genome Sequence of an Environmental Isolate of the Bacterial Pathogen Legionella pneumophila. Genome Announcements, 2013, 1, .	0.8	10
67	Induction of Rapid Cell Death by an Environmental Isolate of Legionella pneumophila in Mouse Macrophages. Infection and Immunity, 2013, 81, 3077-3088.	2.2	11
68	Identification of Coxiella burnetii Type IV Secretion Substrates Required for Intracellular Replication and Coxiella-Containing Vacuole Formation. Journal of Bacteriology, 2013, 195, 3914-3924.	2.2	96
69	Methods for Determining Protein Translocation by the Legionella pneumophila Dot/Icm Type IV Secretion System. Methods in Molecular Biology, 2013, 954, 323-332.	0.9	4
70	Legionella pneumophila Infection of Drosophila S2 Cells Induces Only Minor Changes in Mitochondrial Dynamics. PLoS ONE, 2013, 8, e62972.	2.5	6
71	Structural basis for substrate recognition by a unique <i>Legionella</i> phosphoinositide phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13567-13572.	7.1	107
72	Legionella secreted effectors and innate immune responses. Cellular Microbiology, 2012, 14, 19-27.	2.1	55

ZHAO-QING LUO

#	Article	IF	CITATIONS
73	Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature, 2011, 475, 506-509.	27.8	211
74	Targeting One of its Own: Expanding Roles of Substrates of the Legionella Pneumophila Dot/Icm Type IV Secretion System. Frontiers in Microbiology, 2011, 2, 31.	3.5	21
75	Striking a Balance: Modulation of Host Cell Death Pathways by Legionella Pneumophila. Frontiers in Microbiology, 2011, 2, 36.	3.5	22
76	Comprehensive Identification of Protein Substrates of the Dot/Icm Type IV Transporter of Legionella pneumophila. PLoS ONE, 2011, 6, e17638.	2.5	274
77	The E Block motif is associated with <i>Legionella pneumophila</i> translocated substrates. Cellular Microbiology, 2011, 13, 227-245.	2.1	177
78	Take it and release it. Cellular Logistics, 2011, 1, 125-127.	0.9	4
79	<i>Legionella pneumophila</i> regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21212-21217.	7.1	189
80	<i>Helicobacter pylori</i> vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16032-16037.	7.1	141
81	Secreted Bacterial Effectors That Inhibit Host Protein Synthesis Are Critical for Induction of the Innate Immune Response to Virulent Legionella pneumophila. PLoS Pathogens, 2011, 7, e1001289.	4.7	187
82	Inhibition of Host Vacuolar H+-ATPase Activity by a Legionella pneumophila Effector. PLoS Pathogens, 2010, 6, e1000822.	4.7	197
83	AidH, an Alpha/Beta-Hydrolase Fold Family Member from an <i>Ochrobactrum</i> sp. Strain, Is a Novel <i>N</i> -Acylhomoserine Lactonase. Applied and Environmental Microbiology, 2010, 76, 4933-4942.	3.1	98
84	Large-scale identification and translocation of type IV secretion substrates by <i>Coxiella burnetii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21755-21760.	7.1	185
85	Targeting eEF1A by a <i>Legionella pneumophila</i> effector leads to inhibition of protein synthesis and induction of host stress response. Cellular Microbiology, 2009, 11, 911-926.	2.1	128
86	An <i>in vivo</i> gene deletion system for determining temporal requirement of bacterial virulence factors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9385-9390.	7.1	27
87	The Legionella pneumophila Effector SidJ Is Required for Efficient Recruitment of Endoplasmic Reticulum Proteins to the Bacterial Phagosome. Infection and Immunity, 2007, 75, 592-603.	2.2	132
88	Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5121-5126.	7.1	198
89	Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cellular Microbiology, 2007, 10, 071103031556001-???.	2.1	76
90	Members of a Legionella pneumophila Family of Proteins with ExoU (Phospholipase A) Active Sites Are Translocated to Target Cells. Infection and Immunity, 2006, 74, 3597-3606.	2.2	103

ZHAO-QING LUO

#	Article	IF	CITATIONS
91	Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 841-846.	7.1	449
92	Domains Formed within the N-terminal Region of the Quorumsensing Activator TraR Are Required for Transcriptional Activation and Direct Interaction with RpoA from Agrobacterium. Journal of Biological Chemistry, 2004, 279, 40844-40851.	3.4	26
93	In Situ Activation of the Quorum-Sensing Transcription Factor TraR by Cognate and Noncognate Acyl-Homoserine Lactone Ligands: Kinetics and Consequences. Journal of Bacteriology, 2003, 185, 5665-5672.	2.2	55
94	Mutational Analysis of TraR. Journal of Biological Chemistry, 2003, 278, 13173-13182.	3.4	45
95	Construction of a Derivative of Agrobacterium tumefaciens C58 That Does Not Mutate to Tetracycline Resistance. Molecular Plant-Microbe Interactions, 2001, 14, 98-103.	2.6	109
96	The Agrobacterium tumefaciens rnd Homolog Is Required for TraR-Mediated Quorum-Dependent Activation of Ti Plasmid tra Gene Expression. Journal of Bacteriology, 2001, 183, 3919-3930.	2.2	13
97	Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO Journal, 2000, 19, 5212-5221.	7.8	148
98	The Antiactivator TraM Interferes with the Autoinducer-dependent Binding of TraR to DNA by Interacting with the C-terminal Region of the Quorum-sensing Activator. Journal of Biological Chemistry, 2000, 275, 7713-7722.	3.4	81
99	Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9009-9014.	7.1	103
100	Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of Ti plasmid conjugal transfer genes. Molecular Microbiology, 1999, 34, 282-294.	2.5	77
101	Cloning and Characterization of a Tetracycline Resistance Determinant Present in <i>Agrobacterium tumefaciens</i> C58. Journal of Bacteriology, 1999, 181, 618-626.	2.2	51
102	A New Chemical Trick to Prevent House from Collapsing by Bacterial Pathogens. Chemical Research in Chinese Universities, 0, , 1.	2.6	0