
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/186402/publications.pdf Version: 2024-02-01

LOEL D RUIM

#	Article	IF	CITATIONS
1	The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews, 2006, 25, 3150-3184.	3.0	827
2	Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems. Science, 2007, 318, 417-420.	12.6	725
3	Reporting of variations in the natural isotopic composition of mercury. Analytical and Bioanalytical Chemistry, 2007, 388, 353-359.	3.7	536
4	Mercury Isotopes in Earth and Environmental Sciences. Annual Review of Earth and Planetary Sciences, 2014, 42, 249-269.	11.0	501
5	Mercury isotopes in a forested ecosystem: Implications for airâ€surface exchange dynamics and the global mercury cycle. Global Biogeochemical Cycles, 2013, 27, 222-238.	4.9	364
6	Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4419-4423.	7.1	352
7	Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature, 2002, 417, 729-731.	27.8	349
8	Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series. Geology, 1998, 26, 411.	4.4	317
9	Methylmercury production below the mixed layer in the North Pacific Ocean. Nature Geoscience, 2013, 6, 879-884.	12.9	298
10	Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes. Nature, 1993, 362, 438-441.	27.8	295
11	Isotopic Composition and Fractionation of Mercury in Great Lakes Precipitation and Ambient Air. Environmental Science & Technology, 2010, 44, 7764-7770.	10.0	285
12	Accumulation of heavy metals in food web components across a gradient of lakes. Limnology and Oceanography, 2000, 45, 1525-1536.	3.1	261
13	Using natural strontium isotopic signatures as fish markers: methodology and application. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 2280-2292.	1.4	233
14	Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight. Nature Geoscience, 2010, 3, 173-177.	12.9	233
15	Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica Et Cosmochimica Acta, 2003, 67, 29-46.	3.9	231
16	Title is missing!. Biogeochemistry, 2000, 49, 87-101.	3.5	229
17	Natural Mercury Isotope Variation in Coal Deposits and Organic Soils. Environmental Science & Technology, 2008, 42, 8303-8309.	10.0	219
18	Mercury Stable Isotope Fractionation during Reduction of Hg(II) to Hg(0) by Mercury Resistant Microorganisms. Environmental Science & Technology, 2007, 41, 1889-1895.	10.0	213

#	Article	IF	CITATIONS
19	Rbî—,Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering. Geochimica Et Cosmochimica Acta, 1997, 61, 3193-3204.	3.9	205
20	Reconstructing the lives of fish using Sr isotopes in otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 925-929.	1.4	198
21	Stable Isotope (N, C, Hg) Study of Methylmercury Sources and Trophic Transfer in the Northern Gulf of Mexico. Environmental Science & Technology, 2010, 44, 1630-1637.	10.0	194
22	Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury. Geochimica Et Cosmochimica Acta, 2009, 73, 1285-1296.	3.9	188
23	Isotopic signatures of mercury contamination in latest Permian oceans. Geology, 2017, 45, 55-58.	4.4	186
24	Relation between soil age and silicate weathering rates determined from the chemical evolution of a glacial chronosequence. Geology, 1995, 23, 979.	4.4	177
25	Investigation of Local Mercury Deposition from a Coal-Fired Power Plant Using Mercury Isotopes. Environmental Science & Technology, 2012, 46, 382-390.	10.0	176
26	A silicate weathering mechanism linking increases in marine 87Sr/ 86Sr with global glaciation. Nature, 1995, 373, 415-418.	27.8	175
27	Natural isotope markers in salmon. Nature, 1997, 387, 766-767.	27.8	167
28	Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters. Geochimica Et Cosmochimica Acta, 2002, 66, 3417-3429.	3.9	164
29	lsotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA. Earth and Planetary Science Letters, 2008, 269, 399-407.	4.4	162
30	Measurement of Low Levels of Arsenic Exposure: A Comparison of Water and Toenail Concentrations. American Journal of Epidemiology, 2000, 152, 84-90.	3.4	158
31	Trace Analyses of Arsenic in Drinking Water by Inductively Coupled Plasma Mass Spectrometry:Â High Resolution versus Hydride Generation. Analytical Chemistry, 1999, 71, 1408-1414.	6.5	154
32	The geochemical behavior and isotopic composition of Hg in a mid-Pleistocene western Mediterranean sapropel. Geochimica Et Cosmochimica Acta, 2009, 73, 1651-1665.	3.9	151
33	Sorption of Mercuric Ion by Synthetic Nanocrystalline Mackinawite (FeS). Environmental Science & Technology, 2007, 41, 7699-7705.	10.0	150
34	Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 2001, 65, 2807-2818.	3.9	143
35	15N enrichment in agricultural catchments: field patterns and applications to tracking Atlantic salmon (Salmo salar). Chemical Geology, 1998, 147, 281-294.	3.3	141
36	Mercury isotope fractionation in fossil hydrothermal systems. Geology, 2005, 33, 825.	4.4	140

#	Article	IF	CITATIONS
37	Arsenic Occurrence in New Hampshire Drinking Water. Environmental Science & Technology, 1999, 33, 1328-1333.	10.0	138
38	Mercury Stable Isotope Fractionation during Reduction of Hg(II) by Different Microbial Pathways. Environmental Science & Technology, 2008, 42, 9171-9177.	10.0	138
39	Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid–vapor evaporation experiments. Chemical Geology, 2013, 336, 5-12.	3.3	138
40	Mercury Isotopes Link Mercury in San Francisco Bay Forage Fish to Surface Sediments. Environmental Science & Technology, 2011, 45, 1264-1270.	10.0	136
41	Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes. Geochimica Et Cosmochimica Acta, 2011, 75, 691-705.	3.9	127
42	Recent Developments in Mercury Stable Isotope Analysis. Reviews in Mineralogy and Geochemistry, 2017, 82, 733-757.	4.8	127
43	Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine,) Tj ETQq1 1	0.784314	rgBT /Overloc 124
44	Absence of Fractionation of Mercury Isotopes during Trophic Transfer of Methylmercury to Freshwater Fish in Captivity. Environmental Science & Technology, 2012, 46, 7527-7534.	10.0	121
45	Stream geochemistry as an indicator of increasing permafrost thaw depth in an arctic watershed. Chemical Geology, 2010, 273, 76-81.	3.3	120
46	New Insight into Biomarkers of Human Mercury Exposure Using Naturally Occurring Mercury Stable Isotopes. Environmental Science & Technology, 2013, 47, 3403-3409.	10.0	118
47	The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution. Science of the Total Environment, 2015, 502, 362-374.	8.0	118
48	87Sr/86Sr ratios of sierra nevada stream waters: Implications for relative mineral weathering rates. Geochimica Et Cosmochimica Acta, 1993, 57, 5019-5025.	3.9	117
49	Ca/Sr and 87Sr/86Sr geochemistry of disseminated calcite in Himalayan silicate rocks from Nanga Parbat: Influence on river-water chemistry. Geology, 2000, 28, 463.	4.4	112
50	'Domestic' origin of opaque assemblages in refractory inclusions in meteorites. Nature, 1988, 331, 405-409.	27.8	111
51	Mercury stable isotopes for monitoring the effectiveness of the Minamata Convention on Mercury. Earth-Science Reviews, 2020, 203, 103111.	9.1	110
52	Kinetics of dissolution and Sr release during biotite and phlogopite weathering. Geochimica Et Cosmochimica Acta, 2000, 64, 1191-1208.	3.9	107
53	Nd and Pb isotope variability in the Indus River System: implications for sediment provenance and crustal heterogeneity in the Western Himalaya. Earth and Planetary Science Letters, 2002, 200, 91-106.	4.4	107
54	Sources and Transfers of Methylmercury in Adjacent River and Forest Food Webs. Environmental Science & Technology, 2012, 46, 10957-10964.	10.0	107

#	Article	IF	CITATIONS
55	The dependence of labradorite dissolution and Sr isotope release rates on solution saturation state. Geochimica Et Cosmochimica Acta, 2000, 64, 2389-2400.	3.9	105
56	Origin of opaque assemblages in C3V meteorites: Implications for nebular and planetary processes. Geochimica Et Cosmochimica Acta, 1989, 53, 543-556.	3.9	104
57	Restoring Soil Calcium Reverses Forest Decline. Environmental Science and Technology Letters, 2014, 1, 15-19.	8.7	103
58	Influence of Snow and Ice Crystal Formation and Accumulation on Mercury Deposition to the Arctic. Environmental Science & Technology, 2008, 42, 1542-1551.	10.0	101
59	Relationship between mechanical erosion and atmospheric CO2 consumption in the New Zealand Southern Alps. Geology, 2003, 31, 865.	4.4	99
60	An isotopic record of mercury in San Francisco Bay sediment. Chemical Geology, 2013, 349-350, 87-98.	3.3	98
61	Mercury Isotope Study of Sources and Exposure Pathways of Methylmercury in Estuarine Food Webs in the Northeastern U.S Environmental Science & Technology, 2014, 48, 10089-10097.	10.0	97
62	Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: carbonate versus silicate weathering rates as a function of landscape surface age. Geochimica Et Cosmochimica Acta, 2002, 66, 13-27.	3.9	95
63	Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA. Science of the Total Environment, 2013, 448, 163-175.	8.0	94
64	Lead isotope systematics of granitoid weathering. Geochimica Et Cosmochimica Acta, 1994, 58, 5299-5306.	3.9	92
65	Isotopic comparison of K/T boundary impact glass with melt rock from the Chicxulub and Manson impact structures. Nature, 1993, 364, 325-327.	27.8	91
66	Boron and lithium isotopes as groundwater tracers: a study at the Fresh Kills Landfill, Staten Island, New York, USA. Applied Geochemistry, 2003, 18, 615-627.	3.0	91
67	Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urbanâ€industrial region near Pensacola, Florida, USA. Global Biogeochemical Cycles, 2015, 29, 1689-1705.	4.9	87
68	Neodymium and strontium isotopic study of Australasian tektites: New constraints on the provenance and age of target materials. Geochimica Et Cosmochimica Acta, 1992, 56, 483-492.	3.9	85
69	Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. Science of the Total Environment, 2005, 339, 89-101.	8.0	85
70	Influence of landscape position and vegetation on long-term weathering rates at the Hubbard Brook Experimental Forest, New Hampshire, USA. Geochimica Et Cosmochimica Acta, 2004, 68, 3065-3078.	3.9	84
71	Assessing Sources of Human Methylmercury Exposure Using Stable Mercury Isotopes. Environmental Science & Technology, 2014, 48, 8800-8806.	10.0	84
72	Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments. Environmental Toxicology and Chemistry, 2013, 32, 2322-2330.	4.3	83

#	Article	lF	CITATIONS
73	Mycorrhizas in changing ecosystems [,] . Botany, 2014, 92, 149-160.	1.0	82
74	Release of mercury from Rocky Mountain forest fires. Global Biogeochemical Cycles, 2007, 21, .	4.9	80
75	Geochemistry of Soils and Streams on Surfaces of Varying Ages in Arctic Alaska. Arctic, Antarctic, and Alpine Research, 2007, 39, 84-98.	1.1	79
76	Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison. Soil Biology and Biochemistry, 2014, 69, 63-70.	8.8	79
77	Systematic Changes in Lead Isotopic Composition with Soil Age in Glacial Granitic Terrains. Geochimica Et Cosmochimica Acta, 1998, 62, 33-46.	3.9	78
78	Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin. Chemical Geology, 2013, 336, 62-71.	3.3	77
79	Mercury Stable Isotope Fractionation during Abiotic Dark Oxidation in the Presence of Thiols and Natural Organic Matter. Environmental Science & Technology, 2019, 53, 1853-1862.	10.0	77
80	Re-Os isotope systematics and weathering of Precambrian crustal rocks: implications for the marine osmium isotope record. Geochimica Et Cosmochimica Acta, 1998, 62, 3193-3203.	3.9	76
81	Effects of ultraviolet radiation on mercury isotope fractionation during photo-reduction for inorganic and organic mercury species. Chemical Geology, 2015, 405, 102-111.	3.3	76
82	Dissolution of wollastonite during the experimental manipulation of Hubbard Brook Watershed 1. Biogeochemistry, 2004, 67, 309-329.	3.5	75
83	Review of stable mercury isotopes in ecology and biogeochemistry. Science of the Total Environment, 2020, 716, 135386.	8.0	73
84	The source and transport of arsenic in a bedrock aquifer, New Hampshire, USA. Applied Geochemistry, 2003, 18, 1773-1787.	3.0	69
85	Importance of Integration and Implementation of Emerging and Future Mercury Research into the Minamata Convention. Environmental Science & Technology, 2016, 50, 2767-2770.	10.0	68
86	Mercury Isotopic Evidence for Multiple Mercury Sources in Coal from the Illinois Basin. Environmental Science & Technology, 2011, 45, 1724-1729.	10.0	66
87	Tracking the Fate of Mercury in the Fish and Bottom Sediments of Minamata Bay, Japan, Using Stable Mercury Isotopes. Environmental Science & Technology, 2015, 49, 5399-5406.	10.0	65
88	Chemical weathering and lithologic controls of water chemistry in a high-elevation river system: Clark's Fork of the Yellowstone River, Wyoming and Montana. Water Resources Research, 1999, 35, 1643-1655.	4.2	64
89	lsotopic study of mercury sources and transfer between a freshwater lake and adjacent forest food web. Science of the Total Environment, 2015, 532, 220-229.	8.0	64
90	Microbial stable isotope fractionation of mercury: A synthesis of present understanding and future directions. Chemical Geology, 2013, 336, 13-25.	3.3	63

#	Article	IF	CITATIONS
91	Rates of sustainable forest harvest depend on rotation length and weathering of soil minerals. Forest Ecology and Management, 2014, 318, 194-205.	3.2	63
92	Variation in Terrestrial and Aquatic Sources of Methylmercury in Stream Predators as Revealed by Stable Mercury Isotopes. Environmental Science & amp; Technology, 2014, 48, 10128-10135.	10.0	63
93	A sequential extraction to determine the distribution of apatite in granitoid soil mineral pools with application to weathering at the Hubbard Brook Experimental Forest, NH, USA. Applied Geochemistry, 2007, 22, 2406-2421.	3.0	60
94	Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Scientific Reports, 2015, 5, 14679.	3.3	60
95	New Insights on Ecosystem Mercury Cycling Revealed by Stable Isotopes of Mercury in Water Flowing from a Headwater Peatland Catchment. Environmental Science & Technology, 2018, 52, 1854-1861.	10.0	60
96	Evidence for a meteoritic component in impact melt rock from the chicxulub structure. Geochimica Et Cosmochimica Acta, 1994, 58, 1679-1684.	3.9	59
97	Investigation of the deposition and emission of mercury in arctic snow during an atmospheric mercury depletion event. Journal of Geophysical Research, 2008, 113, .	3.3	58
98	Photomicrobial Visible Light-Induced Magnetic Mass Independent Fractionation of Mercury in a Marine Microalga. ACS Earth and Space Chemistry, 2018, 2, 432-440.	2.7	58
99	Biotic Control of Calcium Cycling in Northern Hardwood Forests: Acid Rain and Aging Forests. Ecosystems, 2003, 6, 399-406.	3.4	56
100	Lead and strontium isotopes as monitors of experimental granitoid mineral dissolution. Geochimica Et Cosmochimica Acta, 2004, 68, 4649-4663.	3.9	56
101	Ostrich eggshell bead strontium isotopes reveal persistent macroscale social networking across late Quaternary southern Africa. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6453-6462.	7.1	56
102	Comparing naturally occurring stable isotopes of nitrogen, carbon, and strontium as markers for the rearing locations of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 48-57.	1.4	54
103	Mercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios. Global Biogeochemical Cycles, 2019, 33, 777-794.	4.9	54
104	Hydrogeochemistry of seasonal flow regimes in the Chena River, a subarctic watershed draining discontinuous permafrost in interior Alaska (USA). Chemical Geology, 2013, 335, 48-62.	3.3	53
105	The relative uptake of Ca and Sr into tree foliage using a whole-watershed calcium addition. Biogeochemistry, 2006, 80, 21-41.	3.5	52
106	Mercury storage in surface soils in a central Washington forest and estimated release during the 2001 Rex Creek Fire. Science of the Total Environment, 2008, 404, 129-138.	8.0	52
107	Mercury Isotope Fractionation during the Photochemical Reduction of Hg(II) Coordinated with Organic Ligands. Journal of Physical Chemistry A, 2020, 124, 2842-2853.	2.5	51
108	The dissolution kinetics of a granite and its minerals—Implications for comparison between laboratory and field dissolution rates. Geochimica Et Cosmochimica Acta, 2005, 69, 607-621.	3.9	50

#	Article	IF	CITATIONS
109	Isotopic Composition of Inorganic Mercury and Methylmercury Downstream of a Historical Gold Mining Region. Environmental Science & Technology, 2016, 50, 1691-1702.	10.0	50
110	Mercury Isotopes Reveal Atmospheric Gaseous Mercury Deposition Directly to the Arctic Coastal Snowpack. Environmental Science and Technology Letters, 2019, 6, 235-242.	8.7	50
111	Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors. Science of the Total Environment, 2016, 568, 697-711.	8.0	48
112	The coupled release of REE and Pb to the soil labile pool with time by weathering of accessory phases, Wind River Mountains, WY. Geochimica Et Cosmochimica Acta, 2009, 73, 320-336.	3.9	47
113	Tracing hydrologic flow paths in a small forested watershed using variations in87Sr/86Sr, [Ca]/[Sr], [Ba]/[Sr] and δ18O. Water Resources Research, 2003, 39, .	4.2	46
114	Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes. Environmental Research, 2015, 137, 226-234.	7.5	45
115	Identification of Multiple Mercury Sources to Stream Sediments near Oak Ridge, TN, USA. Environmental Science & Technology, 2014, 48, 3666-3674.	10.0	43
116	Use of foliar Ca/Sr discrimination and 87Sr/86Sr ratios to determine soil Ca sources to sugar maple foliage in a northern hardwood forest. Biogeochemistry, 2008, 87, 287-296.	3.5	42
117	Separation of monomethylmercury from estuarine sediments for mercury isotope analysis. Chemical Geology, 2015, 411, 19-25.	3.3	42
118	Mercury isotopes identify near-surface marine mercury in deep-sea trench biota. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29292-29298.	7.1	42
119	Determining the sources of calcium for migratory songbirds using stable strontium isotopes. Oecologia, 2001, 126, 569-574.	2.0	41
120	Soil Chemical Dynamics after Calcium Silicate Addition to a Northern Hardwood Forest. Soil Science Society of America Journal, 2014, 78, 1458-1468.	2.2	40
121	Controls of Methylmercury Bioaccumulation in Forest Floor Food Webs. Environmental Science & Technology, 2019, 53, 2434-2440.	10.0	39
122	Ichthyolith strontium isotope stratigraphy of a Neogene red clay sequence: calibrating eolian dust accumulation rates in the central North Pacific. Earth and Planetary Science Letters, 2002, 202, 625-636.	4.4	37
123	Isotopic Characterization of Mercury Downstream of Historic Industrial Contamination in the South River, Virginia. Environmental Science & Technology, 2017, 51, 10965-10973.	10.0	36
124	Mantle Hg isotopic heterogeneity and evidence of oceanic Hg recycling into the mantle. Nature Communications, 2022, 13, 948.	12.8	36
125	Photodegradation of methylmercury in stream ecosystems. Limnology and Oceanography, 2013, 58, 13-22.	3.1	35
126	Benefits of Regulating Hazardous Air Pollutants from Coal and Oil-Fired Utilities in the United States. Environmental Science & Technology, 2016, 50, 2117-2120.	10.0	35

#	Article	IF	CITATIONS
127	Increased carbon capture by a silicate-treated forested watershed affected by acid deposition. Biogeosciences, 2021, 18, 169-188.	3.3	35
128	Changes in the mercury isotopic composition of sediments from a remote alpine lake in Wyoming, USA. Science of the Total Environment, 2019, 669, 973-982.	8.0	34
129	The Quantitative Soil Pit Method for Measuring Belowground Carbon and Nitrogen Stocks. Soil Science Society of America Journal, 2012, 76, 2241-2255.	2.2	33
130	Land use and geologic controls on the major elemental and isotopic (δ15N and 87Sr/86Sr) geochemistry of the Connecticut River watershed, USA. Chemical Geology, 2002, 189, 19-34.	3.3	32
131	Stable isotope food-web analysis and mercury biomagnification in polar bears (Ursus maritimus). Polar Research, 2009, 28, 443-454.	1.6	32
132	Frost flowers growing in the Arctic oceanâ€atmosphere–sea ice–snow interface: 2. Mercury exchange between the atmosphere, snow, and frost flowers. Journal of Geophysical Research, 2012, 117, .	3.3	32
133	Mercury abundance and isotopic composition indicate subaerial volcanism prior to the end-Archean "whiff―of oxygen. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	32
134	Chemistry and mineralogy of a granitic, glacial soil chronosequence, Sierra Nevada Mountains, California. Chemical Geology, 1999, 162, 1-14.	3.3	31
135	Nanoscale mineralogy of arsenic in a region of New Hampshire with elevated As-concentrations in the groundwater. American Mineralogist, 2003, 88, 1844-1852.	1.9	31
136	Carbon, Nitrogen, and Mercury Isotope Evidence for the Biogeochemical History of Mercury in Hawaiian Marine Bottomfish. Environmental Science & Technology, 2017, 51, 13976-13984.	10.0	31
137	87 Sr/86 Sr as a tracer of groundwater discharge and precipitation recharge in the Glacial Lake Agassiz Peatlands, northern Minnesota. Water Resources Research, 2000, 36, 3701-3710.	4.2	30
138	Terrestrial gastropod responses to an ecosystem-level calcium manipulation in a northern hardwood forest. Canadian Journal of Zoology, 2007, 85, 994-1007.	1.0	30
139	Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Environmental Sciences: Processes and Impacts, 2018, 20, 686-707.	3.5	30
140	Resonance ionization mass spectrometry of sputtered osmium and rhenium atoms. Analytical Chemistry, 1990, 62, 209-214.	6.5	29
141	Understanding sources of methylmercury in songbirds with stable mercury isotopes: Challenges and future directions. Environmental Toxicology and Chemistry, 2018, 37, 166-174.	4.3	29
142	Sediment flux in the modern Indus River inferred from the trace element composition of detrital amphibole grains. Sedimentary Geology, 2003, 160, 243-257.	2.1	28
143	Mineral Sources of Calcium and Phosphorus in Soils of the Northeastern United States. Soil Science Society of America Journal, 2008, 72, 1786-1794.	2.2	28
144	Applications of Stable Mercury Isotopes to Biogeochemistry. Advances in Isotope Geochemistry, 2012, , 229-245.	1.4	28

#	Article	IF	CITATIONS
145	Miocene to recent eolian dust record from the Southwest Pacific Ocean at 40° S latitude. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261, 218-233.	2.3	27
146	The specific surface area and chemical composition of diamond dust near Barrow, Alaska. Journal of Geophysical Research, 2011, 116, .	3.3	27
147	Quantifying mercury isotope dynamics in captive Pacific bluefin tuna (<i>Thunnus orientalis</i>). Elementa, 2016, 4, .	3.2	26
148	Origin, Reactivity, and Bioavailability of Mercury in Wildfire Ash. Environmental Science & Technology, 2018, 52, 14149-14157.	10.0	25
149	Contrasting Controls on the Diel Isotopic Variation of Hg ⁰ at Two High Elevation Sites in the Western United States. Environmental Science & amp; Technology, 2020, 54, 10502-10513.	10.0	25
150	Sources and exposure of the New Hampshire population to arsenic in public and private drinking water supplies. Chemical Geology, 2006, 228, 72-84.	3.3	24
151	Watershed-Level Responses to Calcium Silicate Treatment in a Northern Hardwood Forest. Ecosystems, 2012, 15, 416-434.	3.4	24
152	A Pulse of Mercury and Major Ions in Snowmelt Runoff from a Small Arctic Alaska Watershed. Environmental Science & Technology, 2017, 51, 11145-11155.	10.0	24
153	Methylmercury degradation and exposure pathways in streams and wetlands impacted by historical mining. Science of the Total Environment, 2016, 568, 1192-1203.	8.0	23
154	Petrology of cogenetic silica-saturated and -oversaturated plutonic rocks in the Ruby geanticline of north-central Alaska. Canadian Journal of Earth Sciences, 1987, 24, 159-169.	1.3	22
155	Glacial-interglacial terrigenous provenance in the southeastern Atlantic Ocean: The importance of deep-water sources and surface currents. Geology, 2006, 34, 545.	4.4	22
156	Spatial and temporal variation in the isotopic composition of mercury in the South River, VA. Chemical Geology, 2018, 494, 96-108.	3.3	22
157	Nd, Sr and O isotopic study of the petrogenesis of two syntectonic members of the New Hampshire Plutonic Series. Contributions To Mineralogy and Petrology, 1996, 124, 126-138.	3.1	21
158	Determinants of survival over 7 years for a natural cohort of sugar maple seedlings in a northern hardwood forest. Canadian Journal of Forest Research, 2014, 44, 1112-1121.	1.7	21
159	Long-term responses in soil solution and stream-water chemistry at Hubbard Brook after experimental addition of wollastonite. Environmental Chemistry, 2016, 13, 528.	1.5	21
160	Biogenic carbonate mercury and marine temperature records reveal global influence of Late Cretaceous Deccan Traps. Nature Communications, 2019, 10, 5356.	12.8	21
161	Patterns of Ca/Sr and 87Sr/86Sr variation before and after a whole watershed CaSiO3 addition at the Hubbard Brook Experimental Forest, USA. Geochimica Et Cosmochimica Acta, 2010, 74, 3129-3142.	3.9	20
162	Fine root biomass declined in response to restoration of soil calcium in a northern hardwood forest. Canadian Journal of Forest Research, 2016, 46, 738-744.	1.7	20

#	Article	IF	CITATIONS
163	Mesmerized by mercury. Nature Chemistry, 2013, 5, 1066-1066.	13.6	19
164	Seasonal and spatial changes in carbon and nitrogen fluxes estimated using 234Th:238U disequilibria in the North Pacific tropical and subtropical gyre. Marine Chemistry, 2019, 217, 103705.	2.3	18
165	Diffusion, phase equilibria and partitioning experiments in the Niî—,Feî—,Ru system. Geochimica Et Cosmochimica Acta, 1989, 53, 483-489.	3.9	17
166	Foliar Nutrient Concentrations Related to Soil Sources across a Range of Sites in the Northeastern United States. Soil Science Society of America Journal, 2012, 76, 674-683.	2.2	17
167	Determination of foliar Ca/Sr discrimination factors for six tree species and implications for Ca sources in northern hardwood forests. Plant and Soil, 2012, 356, 303-314.	3.7	17
168	Using thermal analysis coupled to isotope dilution cold vapor ICP-MS in the quantification of atmospheric particulate phase mercury. Journal of Analytical Atomic Spectrometry, 2013, 28, 1788.	3.0	17
169	A model of mercury cycling and isotopic fractionation in the ocean. Biogeosciences, 2018, 15, 6297-6313.	3.3	17
170	Mercury stable isotopes in flying fish as a monitor of photochemical degradation of methylmercury in the Atlantic and Pacific Oceans. Marine Chemistry, 2020, 223, 103790.	2.3	17
171	Insitu measurement of osmium concentrations in iron meteorites by resonance ionization of sputtered atoms. Geochimica Et Cosmochimica Acta, 1990, 54, 875-881.	3.9	16
172	The effects of a whole-watershed calcium addition on the chemistry of stream storm events at the Hubbard Brook Experimental Forest in NH, USA. Science of the Total Environment, 2009, 407, 5392-5401.	8.0	16
173	Mercury accumulation in sea lamprey (Petromyzon marinus) from Lake Huron. Science of the Total Environment, 2014, 470-471, 1313-1319.	8.0	16
174	Concentration and isotopic composition of mercury in a blackwater river affected by extreme flooding events. Limnology and Oceanography, 2020, 65, 2158-2169.	3.1	16
175	Mercury concentrations, speciation, and isotopic composition in sediment from a cold seep in the northern Gulf of Mexico. Marine Pollution Bulletin, 2013, 77, 308-314.	5.0	15
176	Thermal alteration of labile elements in carbonaceous chondrites. Icarus, 2019, 324, 104-119.	2.5	14
177	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
178	lsotopic Composition of Hg in Fogwaters of Coastal California. Environmental Science and Technology Letters, 2021, 8, 3-8.	8.7	13
179	Isotopic Characterization of Mercury in Natural Gas via Analysis of Mercury Removal Unit Catalysts. ACS Earth and Space Chemistry, 2018, 2, 462-470.	2.7	12
180	UPb dating of Fe-rich phases using a sequential leaching method. Geochimica Et Cosmochimica Acta, 1997, 61, 1697-1703.	3.9	11

#	Article	IF	CITATIONS
181	Marine mercury breakdown. Nature Geoscience, 2011, 4, 139-140.	12.9	11
182	EGGSHELL CHARACTERISTICS AND CALCIUM DEMANDS OF A MIGRATORY SONGBIRD BREEDING IN TWO NEW ENGLAND FORESTS. The Wilson Bulletin, 2001, 113, 94-100.	0.5	10
183	Integrative measures of consumption rates in salmon: expansion and application of a trace element approach. Journal of Applied Ecology, 2004, 41, 1009-1020.	4.0	10
184	Ca/Sr and 87Sr/86Sr geochemistry of disseminated calcite in Himalayan silicate rocks from Nanga Parbat: Influence on river-water chemistry. Geology, 2000, 28, 463-466.	4.4	10
185	Oxygen, carbon, and strontium isotopic constraints on timing and sources of crustal fluids in an active orogen: South Island, New Zealand. New Zealand Journal of Geology, and Geophysics, 2003, 46, 457-471.	1.8	9
186	Use of sequential extraction and mercury stable isotope analysis to assess remobilization of sediment-bound legacy mercury. Environmental Sciences: Processes and Impacts, 2021, 23, 756-775.	3.5	9
187	THE IMPACT-FLOOD CONNECTION: DOES IT EXIST?. Terra Nova, 1994, 6, 644-650.	2.1	8
188	A petrologic and Rb–Sr isotopic study of intrusive rocks near Fairbanks, Alaska. Canadian Journal of Earth Sciences, 1985, 22, 1314-1321.	1.3	7
189	Litter layers (Oie) as a calcium source of sugar maple seedlings in a northern hardwood forest. Canadian Journal of Forest Research, 2011, 41, 898-901.	1.7	7
190	Isotopic evidence for mercury photoreduction and retention on particles in surface waters of Central California, USA. Science of the Total Environment, 2019, 674, 451-461.	8.0	7
191	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
192	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
193	Isotopic composition of mercury deposited via snow into mid-latitude ecosystems. Science of the Total Environment, 2021, 784, 147252.	8.0	5
194	Zircon can take the heat. Nature, 1993, 366, 718-718.	27.8	4
195	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
196	17 Recent Developments in Mercury Stable Isotope Analysis. , 2017, , 733-758.		3
197	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
198	Mycorrhizal weathering in base-poor forests. Nature, 2003, 423, 824-824.	27.8	2

#	Article	IF	CITATIONS
199	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
200	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
201	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
202	Calibrating a long-term meteoric ¹⁰ Be delivery rate into eroding western US glacial deposits by comparing meteoric and in situ produced ¹⁰ Be depth profiles. Geochronology, 2020, 2, 411-423.	2.5	2
203	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
204	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
205	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
206	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
207	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
208	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
209	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
210	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
211	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
212	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
213	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
214	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
215	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
216	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1

JOEL D BLUM

#	Article	IF	CITATIONS
217	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
218	Citation for presentation of the 2008 F.W. Clarke Award to Andrew D. Jacobson. Geochimica Et Cosmochimica Acta, 2009, 73, S7.	3.9	0
219	Welcome to <i>ACS Earth and Space Chemistry</i> . ACS Earth and Space Chemistry, 2017, 1, 1-2.	2.7	0
220	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
221	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
222	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
223	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
224	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
225	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
226	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
227	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
228	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
229	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
230	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
231	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
232	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
233	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
234	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0

#	Article	IF	CITATIONS
235	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
236	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
237	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
238	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
239	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
240	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
241	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
242	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
243	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
244	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
245	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
246	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
247	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
248	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
249	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
250	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
251	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
252	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0

#	Article	IF	CITATIONS
253	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
254	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
255	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
256	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
257	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
258	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
259	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
260	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
261	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
262	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
263	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
264	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
265	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
266	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
267	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
268	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
269	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
270	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0

#	Article	IF	CITATIONS
271	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	Ο
272	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
273	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
274	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
275	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
276	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
277	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	Ο
278	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
279	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
280	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
281	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
282	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
283	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	Ο
284	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
285	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
286	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
287	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
288	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0

#	Article	IF	CITATIONS
289	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
290	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
291	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
292	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
293	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
294	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
295	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
296	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
297	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
298	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
299	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
300	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
301	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
302	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
303	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
304	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
305	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
306	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0

#	Article	IF	CITATIONS
307	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
308	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
309	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	Ο
310	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
311	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	Ο
312	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
313	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
314	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
315	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	Ο
316	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
317	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	Ο
318	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
319	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
320	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0