Julien Berger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1863963/publications.pdf

Version: 2024-02-01

759233 794594 44 500 12 19 h-index citations g-index papers 46 46 46 318 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Assessing the wall energy efficiency design under climate change using POD reduced order model. Energy and Buildings, 2022, 268, 112187.	6.7	O
2	An efficient two-dimensional heat transfer model for building envelopes. Numerical Heat Transfer; Part A: Applications, 2021, 79, 163-194.	2.1	10
3	An efficient sensitivity analysis for energy performance of building envelope: A continuous derivative based approach. Building Simulation, 2021, 14, 909-930.	5.6	10
4	Parametric PGD model used with orthogonal polynomials to assess efficiently the building's envelope thermal performance. Journal of Building Performance Simulation, 2021, 14, 132-154.	2.0	2
5	Accelerated Aging Effects on the Hygrothermal Behaviour of Hemp Concrete: Experimental and Numerical Investigations. Energies, 2021, 14, 7005.	3.1	7
6	On the comparison of three numerical methods applied to building simulation: Finite-differences, RC circuit approximation and a spectral method. Building Simulation, 2020, 13, 1-18.	5.6	12
7	Weather-based indicators for analysis of moisture risks in buildings. Science of the Total Environment, 2020, 709, 134850.	8.0	8
8	Searching an optimal experiment observation sequence to estimate the thermal properties of a multilayer wall under real climate conditions. International Journal of Heat and Mass Transfer, 2020, 155, 119810.	4.8	9
9	Estimation of the thermal properties of an historic building wall by combining modal identification method and optimal experiment design. Building and Environment, 2020, 185, 107065.	6.9	6
10	Parameter estimation and model selection for water sorption in a wood fibre material. Wood Science and Technology, 2020, 54, 1423-1446.	3.2	5
11	Critical assessment of a new mathematical model for hysteresis effects on heat and mass transfer in porous building material. International Journal of Thermal Sciences, 2020, 151, 106275.	4.9	5
12	An efficient numerical model for the simulation of coupled heat, air, and moisture transfer in porous media. Engineering Reports, 2020, 2, e12099.	1.7	2
13	An efficient method to estimate sorption isotherm curve coefficients. Inverse Problems in Science and Engineering, 2019, 27, 735-772.	1.2	4
14	Evaluation of the reliability of a heat and mass transfer model in hygroscopic material. International Journal of Heat and Mass Transfer, 2019, 142, 118258.	4.8	13
15	Critical assessment of efficient numerical methods for a long-term simulation of heat and moisture transfer in porous materials. International Journal of Thermal Sciences, 2019, 145, 105982.	4.9	4
16	A new model for simulating heat, air and moisture transport in porous building materials. International Journal of Heat and Mass Transfer, 2019, 134, 1041-1060.	4.8	15
17	An efficient numerical model for liquid water uptake in porous material and its parameter estimation. Numerical Heat Transfer; Part A: Applications, 2019, 75, 110-136.	2.1	3
18	An innovative method to determine optimum insulation thickness based on non-uniform adaptive moving grid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	9

#	Article	IF	Citations
19	Numerical Methods for Diffusion Phenomena in Building Physics. , 2019, , .		5
20	Comparison of model numerical predictions of heat and moisture transfer in porous media with experimental observations at material and wall scales: An analysis of recent trends. Drying Technology, 2019, 37, 1363-1395.	3.1	22
21	Comparative Study of Three Models for Moisture Transfer in Hygroscopic Materials. Transport in Porous Media, 2019, 126, 379-410.	2.6	5
22	Solving nonlinear diffusive problems in buildings by means of a Spectral reduced-order model. Journal of Building Performance Simulation, 2019, 12, 17-36.	2.0	9
23	EVALUATING MODEL REDUCTION METHODS FOR HEAT AND MASS TRANSFER IN POROUS MATERIALS: PROPER ORTHOGONAL DECOMPOSITION AND PROPER GENERALIZED DECOMPOSITION. Journal of Porous Media, 2019, 22, 363-385.	1.9	6
24	An artificial intelligence-based method to efficiently bring CFD to building simulation. Journal of Building Performance Simulation, $2018, 11, 588-603$.	2.0	14
25	Intelligent co-simulation: neural network vs. proper orthogonal decomposition applied to a 2D diffusive problem. Journal of Building Performance Simulation, 2018, 11, 568-587.	2.0	11
26	Dynamic experimental method for identification of hygric parameters of a hygroscopic material. Building and Environment, 2018, 131, 197-209.	6.9	23
27	On the Solution of Coupled Heat and Moisture Transport in Porous Material. Transport in Porous Media, 2018, 121, 665-702.	2.6	12
28	Analysis and improvement of the VTT mold growth model: Application to bamboo fiberboard. Building and Environment, 2018, 138, 262-274.	6.9	14
29	Stable explicit schemes for simulation of nonlinear moisture transfer in porous materials. Journal of Building Performance Simulation, 2018, 11, 129-144.	2.0	35
30	An improved explicit scheme for whole-building hygrothermal simulation. Building Simulation, 2018, 11, 465-481.	5.6	16
31	A hybrid analytical–numerical method for computing coupled temperature and moisture content fields in porous soils. Journal of Building Physics, 2018, 42, 68-94.	2.4	2
32	Advanced Reduced-Order Models for Moisture Diffusion in Porous Media. Transport in Porous Media, 2018, 124, 965-994.	2.6	5
33	An adaptive simulation of nonlinear heat and moisture transfer as a boundary value problem. International Journal of Thermal Sciences, 2018, 133, 120-139.	4.9	10
34	Proper Generalized Decomposition model reduction in the Bayesian framework for solving inverse heat transfer problems. Inverse Problems in Science and Engineering, 2017, 25, 260-278.	1.2	17
35	Accurate numerical simulation of moisture front in porous material. Building and Environment, 2017, 118, 211-224.	6.9	19
36	On the optimal experiment design for heat and moisture parameter estimation. Experimental Thermal and Fluid Science, 2017, 81, 109-122.	2.7	16

#	Article	IF	CITATION
37	Review of Reduced Order Models for Heat and Moisture Transfer in Building Physics with Emphasis in PGD Approaches. Archives of Computational Methods in Engineering, 2017, 24, 655-667.	10.2	11
38	Bayesian inference for estimating thermal properties of a historic building wall. Building and Environment, 2016, 106, 327-339.	6.9	40
39	Estimation of temperature-dependent thermal conductivity using proper generalised decomposition for building energy management. Journal of Building Physics, 2016, 40, 235-262.	2.4	7
40	2D whole-building hygrothermal simulation analysis based on a PGD reduced order model. Energy and Buildings, $2016,112,49-61.$	6.7	18
41	Numerical methods for diffusion phenomena in building physics: a practical introduction. , 2016, , .		11
42	Factors governing the development of moisture disorders for integration into building performance simulation. Journal of Building Engineering, 2015, 3, 1-15.	3.4	40
43	Average reduced model to simulate solutions for heat and mass transfer through porous material. Heat Transfer, 0, , .	3.0	0
44	Surface Transfer Coefficients Estimation for Heat Conduction Problem Using the Bayesian Framework. Heat Transfer Engineering, 0, , 1-20.	1.9	0