Jocelyn C Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1863816/publications.pdf

Version: 2024-02-01

279798 302126 2,598 39 23 39 citations h-index g-index papers 40 40 40 3310 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8362-8366.	7.1	458
2	Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. American Journal of Botany, 2002, 89, 1826-1842.	1.7	234
3	Congruence Versus Phylogenetic Accuracy: Revisiting the Incongruence Length Difference Test. Systematic Biology, 2004, 53, 81-89.	5 . 6	214
4	Ancient Vicariance or Recent Longâ€Distance Dispersal? Inferences about Phylogeny and South American–African Disjunctions in Rapateaceae and Bromeliaceae Based on ndhF Sequence Data. International Journal of Plant Sciences, 2004, 165, S35-S54.	1.3	187
5	Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on <i>rbcL</i> , <i>trnLâ€F</i> , and <i>ndhF</i> sequences. American Journal of Botany, 2002, 89, 1531-1546.	1.7	183
6	Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1481-1490.	2.6	100
7	The <i>Tarenaya hassleriana</i> Genome Provides Insight into Reproductive Trait and Genome Evolution of Crucifers Â. Plant Cell, 2013, 25, 2813-2830.	6.6	95
8	Phylogenetic relationships and biogeography of <i>Fuchsia</i> (Onagraceae) based on noncoding nuclear and chloroplast DNA data. American Journal of Botany, 2004, 91, 601-614.	1.7	93
9	Increased competition does not lead to increased phylogenetic overdispersion in a native grassland. Ecology Letters, 2013, 16, 1168-1176.	6.4	89
10	Biogeography and diversification of Brassicales: A 103 million year tale. Molecular Phylogenetics and Evolution, 2016, 99, 204-224.	2.7	87
11	Molecular Phylogenetics of Core Brassicales, Placement of Orphan Genera Emblingia, Forchhammeria, Tirania, and Character Evolution. Systematic Botany, 2004, 29, 654-669.	0.5	81
12	Evolutionary dynamics of genes controlling floral development. Current Opinion in Plant Biology, 2005, 8, 13-18.	7.1	80
13	Brassicales phylogeny inferred from 72 plastid genes: A reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. American Journal of Botany, 2018, 105, 463-469.	1.7	76
14	Systematics of Capparaceae and Cleomaceae: an evaluation of the generic delimitations of <i>Capparis</i> and <i>Cleome</i> using plastid DNA sequence dataThis paper is one of a selection of papers published in the Special Issue on Systematics Research Botany, 2008, 86, 682-696.	1.0	64
15	Resolved phylogeny of Cleomaceae based on all three genomes. Taxon, 2014, 63, 315-328.	0.7	59
16	Convergent evolution of a complex fruit structure in the tribe Brassiceae (Brassicaceae). American Journal of Botany, 2011, 98, 1989-2003.	1.7	43
17	Studies in the Cleomaceae I. On the Separate Recognition of Capparaceae, Cleomaceae, and Brassicaceae ¹ . Annals of the Missouri Botanical Garden, 2011, 98, 28-36.	1.3	37
18	Potential Hybridization of Flax with Weedy and Wild Relatives: An Avenue for Movement of Engineered Genes?. Crop Science, 2008, 48, 825-840.	1.8	35

#	Article	IF	CITATIONS
19	Lessons from Cleomaceae, the Sister of Crucifers. Trends in Plant Science, 2018, 23, 808-821.	8.8	35
20	Understanding the basis of a novel fruit type in Brassicaceae: conservation and deviation in expression patterns of six genes. EvoDevo, 2012, 3, 20.	3.2	34
21	Phylogeny and multiple independent wholeâ€genome duplication events in the Brassicales. American Journal of Botany, 2020, 107, 1148-1164.	1.7	32
22	Genomeâ€wide set of <scp>SNP</scp> s reveals evidence for two glacial refugia and admixture from postglacial recolonization in an alpine ungulate. Molecular Ecology, 2016, 25, 3696-3705.	3.9	29
23	A phylogenetic investigation of Carthamus combining sequence and microsatellite data. Plant Systematics and Evolution, 2010, 287, 85-97.	0.9	26
24	Comparative Floral Development in Cleomaceae Reveals Two Distinct Pathways Leading to Monosymmetry. International Journal of Plant Sciences, 2011, 172, 352-365.	1.3	26
25	Developmental Basis of an Anatomical Novelty: Heteroarthrocarpy in Cakile lanceolata and Erucaria erucarioides (Brassicaceae). International Journal of Plant Sciences, 2006, 167, 771-789.	1.3	24
26	Phialide arrangement and character evolution in the helotialean anamorph generaCadophoraandPhialocephala. Mycologia, 2012, 104, 371-381.	1.9	24
27	Molecular identification of roots from a grassland community using size differences in fluorescently labelled PCR amplicons of three cpDNA regions. Molecular Ecology Resources, 2011, 11, 185-195.	4.8	23
28	A revision of generic boundaries and nomenclature in the North American cleomoid clade (Cleomaceae). Phytotaxa, 2015, 205, 129.	0.3	22
29	Potential Hybridization of Genetically Engineered Triticale with Wild and Weedy Relatives in Canada. Crop Science, 2010, 50, 1128-1140.	1.8	18
30	Placing the mountain goat: A total evidence approach to testing alternative hypotheses. Molecular Phylogenetics and Evolution, 2010, 55, 18-25.	2.7	13
31	Lissocarpa Is Sister to Diospyros (Ebenaceae). Kew Bulletin, 2001, 56, 725.	0.9	11
32	Two Wheat (Triticum aestivum) Pathogenesis-Related 10 (PR-10) Transcripts with Distinct Patterns of Abundance in Different Organs. Molecular Biotechnology, 2012, 51, 103-108.	2.4	11
33	Phylogenetic relationships among the North American cleomoids (Cleomaceae): A test of Iltis's reduction series. American Journal of Botany, 2013, 100, 2102-2111.	1.7	10
34	New Generic Concepts for African Cleomaceae. Systematic Botany, 2017, 42, 925-942.	0.5	9
35	A Molecular Identification Protocol for Roots of Boreal Forest Tree Species. Applications in Plant Sciences, 2014, 2, 1400069.	2.1	7
36	Pollination biology of <i>Cleomella serrulata</i> and <i>Polanisia dodecandra</i> in a protected natural prairie in southern Alberta, Canada. Botany, 2015, 93, 745-757.	1.0	7

#	Article	IF	CITATIONS
37	Editorial: A Broader View for Plant EvoDevo: Novel Approaches for Diverse Model Systems. Frontiers in Plant Science, 2017, 8, 61.	3.6	4
38	Virusâ€induced gene silencing as a tool for functional studies in Cleome violacea. Applications in Plant Sciences, 2021, 9, .	2.1	3
39	Multiple lineages of FRUITFULL exhibit dynamic patterns of gene evolution after genome triplication in the Brassiceae tribe (Brassicaceae). Botany, 2019, 97, 293-310.	1.0	2