List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1863563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films. Chemistry of Materials, 2002, 14, 2812-2816.	3.2	601
2	Hybrid Cu _{<i>x</i>} O/TiO ₂ Nanocomposites As Risk-Reduction Materials in Indoor Environments. ACS Nano, 2012, 6, 1609-1618.	7.3	387
3	Nanoporousâ€Walled Tungsten Oxide Nanotubes as Highly Active Visibleâ€Lightâ€Driven Photocatalysts. Angewandte Chemie - International Edition, 2008, 47, 7051-7055.	7.2	383
4	An Efficient Visible-Light-Sensitive Fe(III)-Grafted TiO ₂ Photocatalyst. Journal of Physical Chemistry C, 2010, 114, 16481-16487.	1.5	344
5	Photocatalytic Activity of SrTiO3Codoped with Nitrogen and Lanthanum under Visible Light Illumination. Langmuir, 2004, 20, 232-236.	1.6	292
6	Energy-Level Matching of Fe(III) Ions Grafted at Surface and Doped in Bulk for Efficient Visible-Light Photocatalysts. Journal of the American Chemical Society, 2013, 135, 10064-10072.	6.6	263
7	Cu(II) Oxide Amorphous Nanoclusters Grafted Ti ³⁺ Self-Doped TiO ₂ : An Efficient Visible Light Photocatalyst. Chemistry of Materials, 2011, 23, 5282-5286.	3.2	262
8	Photoinduced Surface Reactions on TiO2and SrTiO3Films:Â Photocatalytic Oxidation and Photoinduced Hydrophilicity. Chemistry of Materials, 2000, 12, 3-5.	3.2	257
9	Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Physical Chemistry Chemical Physics, 2004, 6, 865.	1.3	239
10	Single-Crystalline Rutile TiO ₂ Hollow Spheres: Room-Temperature Synthesis, Tailored Visible-Light-Extinction, and Effective Scattering Layer for Quantum Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 19102-19109.	6.6	224
11	Superhydrophilic Graphene-Loaded TiO ₂ Thin Film for Self-Cleaning Applications. ACS Applied Materials & Interfaces, 2013, 5, 207-212.	4.0	210
12	Reversible wettability control of TiO 2 surface by light irradiation. Surface Science, 2002, 511, 401-407.	0.8	197
13	Visible-Light-Driven Cu(II)â ^{^*} (Sr _{1â^{^*}<i>y</i>} Na _{<i>y</i>})(Ti _{1â^{^*}<i>x</i>} Mo _{<i>x</i>Photocatalysts Based on Conduction Band Control and Surface Ion Modification. Journal of the American Chemical Society, 2010, 132, 15259,15267}	•)O ₃	3
14	Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nature Catalysis, 2020, 3, 148-153.	16.1	194
15	A Highly Hydrophilic Thin Film Under 1 μW/cm2 UV Illumination. Advanced Materials, 2000, 12, 1923-1927.	11.1	191
16	Photocatalytic Carbon Dioxide Reduction by Copper Oxide Nanocluster-Grafted Niobate Nanosheets. ACS Nano, 2015, 9, 2111-2119.	7.3	182
17	Efficient Visible Light Active CaFe ₂ O ₄ /WO ₃ Based Composite Photocatalysts: Effect of Interfacial Modification. Journal of Physical Chemistry C, 2009, 113, 17132-17137.	1.5	178
18	Formation and Characterization of Hydrogen Boride Sheets Derived from MgB ₂ by Cation Exchange. Journal of the American Chemical Society, 2017, 139, 13761-13769.	6.6	157

#	Article	IF	CITATIONS
19	ZnO-based visible-light photocatalyst: Band-gap engineering and multi-electron reduction by co-catalyst. Applied Catalysis B: Environmental, 2010, 100, 502-509.	10.8	155
20	Photoinduced Hydrophilic Conversion of TiO2/WO3 Layered Thin Films. Chemistry of Materials, 2002, 14, 4714-4720.	3.2	150
21	Accelerating CO ₂ Electroreduction to Multicarbon Products via Synergistic Electric–Thermal Field on Copper Nanoneedles. Journal of the American Chemical Society, 2022, 144, 3039-3049.	6.6	147
22	Electrochromism of Titanate-Based Nanotubes. Angewandte Chemie - International Edition, 2005, 44, 1974-1977.	7.2	143
23	Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres. Sensors and Actuators B: Chemical, 2009, 140, 514-519.	4.0	142
24	Visible-Light-Sensitive Photocatalysts: Nanocluster-Grafted Titanium Dioxide for Indoor Environmental Remediation. Journal of Physical Chemistry Letters, 2016, 7, 75-84.	2.1	138
25	Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles. Physical Chemistry Chemical Physics, 2008, 10, 6258.	1.3	137
26	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 71-76.	1.1	135
27	N-doped TiO2Nanotube with Visible Light Activity. Chemistry Letters, 2004, 33, 1108-1109.	0.7	134
28	Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices. Chemical Communications, 2010, 46, 1529.	2.2	131
29	Ce-doped ZnO (CexZn1â^'xO) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting. Physical Chemistry Chemical Physics, 2011, 13, 14937.	1.3	131
30	Photocatalytic reduction of CO2 on Cu2O-loaded Zn-Cr layered double hydroxides. Applied Catalysis B: Environmental, 2018, 224, 783-790.	10.8	129
31	Enhanced Photoactivity with Nanocluster-Grafted Titanium Dioxide Photocatalysts. ACS Nano, 2014, 8, 7229-7238.	7.3	120
32	Siteâ€Selective Deposition of Metal Nanoparticles on Aligned WO ₃ Nanotrees for Superâ€Hydrophilic Thin Films. Advanced Materials, 2009, 21, 1373-1376.	11.1	107
33	Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode. Applied Physics Letters, 2005, 87, 213901.	1.5	104
34	Enhancing the performance of quantum dots sensitized solar cell by SiO2 surface coating. Applied Physics Letters, 2010, 96, .	1.5	96
35	Analysis of Bending Displacement of Lead Zirconate Titanate Thin Film Synthesized by Hydrothermal Method. Japanese Journal of Applied Physics, 1993, 32, 4095-4098.	0.8	95
36	Vertical Cu Nanoneedle Arrays Enhance the Local Electric Field Promoting C ₂ Hydrocarbons in the CO ₂ Electroreduction. Nano Letters, 2022, 22, 1963-1970.	4.5	95

#	Article	IF	CITATIONS
37	Selective electro- or photo-reduction of carbon dioxide to formic acid using a Cu–Zn alloy catalyst. Journal of Materials Chemistry A, 2017, 5, 12113-12119.	5.2	92
38	Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by a hydrothermal reaction. Journal of Materials Chemistry, 2007, 17, 2095.	6.7	88
39	Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chemical Science, 2021, 12, 11306-11315.	3.7	88
40	A facile one-step hydrothermal synthesis of rhombohedral CuFeO2 crystals with antivirus property. Chemical Communications, 2012, 48, 7365.	2.2	86
41	Nanocrystalline Electrodes Based on Nanoporous-Walled WO ₃ Nanotubes for Organic-Dye-Sensitized Solar Cells. Langmuir, 2011, 27, 12730-12736.	1.6	85
42	Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction. Applied Physics Letters, 2006, 89, 043114.	1.5	84
43	A metal sulfide photocatalyst composed of ubiquitous elements for solar hydrogen production. Chemical Communications, 2016, 52, 7470-7473.	2.2	81
44	Nature-inspired construction, characterization, and photocatalytic properties of single-crystalline tungsten oxide octahedra. Chemical Communications, 2010, 46, 3321.	2.2	80
45	Selective Growth of n-Type Nanoparticles on p-Type Semiconductors for Z-Scheme Photocatalysis. ACS Applied Materials & Interfaces, 2013, 5, 9770-9776.	4.0	79
46	Balanced Excitation between Two Semiconductors in Bulk Heterojunction Z-Scheme System for Overall Water Splitting. ACS Catalysis, 2016, 6, 2197-2200.	5.5	77
47	Titanate nanotube thin films via alternate layer depositionElectronic supplementary information (ESI) available: XRD patterns of TNT, surface and cross-sectional SEM images of thin films after 5 and 10 cycles. See http://www.rsc.org/suppdata/cc/b3/b316924c/. Chemical Communications, 2004, , 958.	2.2	64
48	Photocatalytic reduction of CO2 by Cu O nanocluster loaded SrTiO3 nanorod thin film. Chemical Physics Letters, 2016, 658, 309-314.	1.2	63
49	Photoinduced hydrogen release from hydrogen boride sheets. Nature Communications, 2019, 10, 4880.	5.8	63
50	Shape Modulation of Tungstic Acid and Tungsten Oxide Hollow Structures. Journal of Physical Chemistry C, 2009, 113, 6539-6546.	1.5	62
51	Chemically Stable WO ₃ Based Thin-Film for Visible-Light Induced Oxidation and Superhydrophilicity. Journal of Physical Chemistry C, 2012, 116, 15421-15426.	1.5	60
52	Tailored Remote Photochromic Coloration of in situ Synthesized CdS Quantum Dot Loaded WO ₃ Films. Advanced Functional Materials, 2010, 20, 4162-4167.	7.8	58
53	Recent Advances in Strategies for Improving the Performance of CO ₂ Reduction Reaction on Single Atom Catalysts. Small Science, 2021, 1, 2000028.	5.8	57
54	Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products. Chinese Journal of Catalysis, 2021, 42, 1500-1508.	6.9	56

#	Article	IF	CITATIONS
55	Visible-light sensitive Cu(<scp>ii</scp>)–TiO ₂ with sustained anti-viral activity for efficient indoor environmental remediation. Journal of Materials Chemistry A, 2015, 3, 17312-17319.	5.2	55
56	Efficient electrochemical reaction in hexagonal WO3 forests with a hierarchical nanostructure. Chemical Physics Letters, 2009, 473, 126-130.	1.2	53
57	Antiviral Effect of Visible Light-Sensitive CuxO/TiO2 Photocatalyst. Catalysts, 2020, 10, 1093.	1.6	53
58	Improved photocatalytic efficiency of a WO3 system by an efficient visible-light induced hole transfer. Chemical Communications, 2012, 48, 4323.	2.2	52
59	Cu(<scp>ii</scp>) nanocluster-grafted, Nb-doped TiO ₂ as an efficient visible-light-sensitive photocatalyst based on energy-level matching between surface and bulk states. Journal of Materials Chemistry A, 2014, 2, 13571-13579.	5.2	49
60	Oxygen-Ion Conduction in the Sm2Zr2O7Pyrochlore Phase. Journal of the American Ceramic Society, 1979, 62, 538-539.	1.9	47
61	Solution-based synthesis of pyrite films with enhanced photocurrent generation. Chemical Communications, 2013, 49, 1232.	2.2	47
62	Visible-light-driven dry reforming of methane using a semiconductor-supported catalyst. Chemical Communications, 2020, 56, 4611-4614.	2.2	46
63	Low-reflective and super-hydrophilic properties of titanate or titania nanotube thin films via layer-by-layer assembly. Thin Solid Films, 2006, 515, 2091-2096.	0.8	45
64	Block copolymer templated nanoporous TiO ₂ for quantum-dot-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 492-497.	6.7	45
65	Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction. Nano Materials Science, 2020, 2, 235-247.	3.9	45
66	Photoinduced Hydrophilicity of Heteroepitaxially Grown ZnO Thin Films. Journal of Physical Chemistry B, 2005, 109, 13307-13311.	1.2	42
67	Enhanced Degradation in Nanocomposites of TiO ₂ and Biodegradable Polymer. Environmental Science & Technology, 2008, 42, 4551-4554.	4.6	40
68	A PEDOT-coated quantum dot as efficient visible light harvester for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2015, 179, 113-121.	10.8	40
69	Strontium Titanate Based Artificial Leaf Loaded with Reduction and Oxidation Cocatalysts for Selective CO ₂ Reduction Using Water as an Electron Donor. ACS Applied Materials & Interfaces, 2017, 9, 20613-20619.	4.0	36
70	Photocatalytic CO ₂ Reduction Using a Pristine Cu ₂ ZnSnS ₄ Film Electrode under Visible Light Irradiation. Journal of Physical Chemistry C, 2018, 122, 21695-21702.	1.5	35
71	Visible-light induced superhydrophilicity on a WO3/ITO/CaFe2O4 heterojunction thin film. Chemical Communications, 2009, , 2002.	2.2	34
72	Electric-field promoted C–C coupling over Cu nanoneedles for CO2 electroreduction to C2 products. Chinese Journal of Catalysis, 2022, 43, 519-525.	6.9	34

#	Article	IF	CITATIONS
73	Visible-light photodecomposition of acetaldehyde by TiO ₂ -coated gold nanocages: plasmon-mediated hot electron transport via defect states. Chemical Communications, 2014, 50, 15553-15556.	2.2	33
74	Thin Films of Single-Crystalline SrTiO3Nanorod Arrays and Their Surface Wettability Conversion. Journal of Physical Chemistry C, 2007, 111, 12440-12445.	1.5	32
75	Reaction mechanism of visible-light responsive Cu(II)-grafted Mo-doped SrTiO3 photocatalyst studied by means of ESR spectroscopy and chemiluminescence photometry. Applied Catalysis B: Environmental, 2012, 111-112, 636-640.	10.8	30
76	Temperature dependence on bandgap of semiconductor photocatalysts. Journal of Chemical Physics, 2020, 152, 231101.	1.2	30
77	Visible light induced super-hydrophilicity on single crystalline TiO2 nanoparticles and WO3 layered thin films. Journal of Materials Chemistry, 2008, 18, 1858.	6.7	29
78	A novel visible-light-driven photochromic material with high-reversibility: tungsten oxide-based organic–inorganic hybrid microflowers. Chemical Communications, 2009, , 2204.	2.2	29
79	Photoenergy Conversion in p-Type Cu2ZnSnS4 Nanorods and n-Type Metal Oxide Composites. Journal of Physical Chemistry C, 2012, 116, 23945-23950.	1.5	29
80	Inactivation of various variant types of SARS-CoV-2 by indoor-light-sensitive TiO2-based photocatalyst. Scientific Reports, 2022, 12, 5804.	1.6	29
81	A Cu–Zn nanoparticle promoter for selective carbon dioxide reduction and its application in visible-light-active Z-scheme systems using water as an electron donor. Chemical Communications, 2018, 54, 3947-3950.	2.2	28
82	Topologically immobilized catalysis centre for long-term stable carbon dioxide reforming of methane. Chemical Science, 2019, 10, 3701-3705.	3.7	27
83	Surface Wetting Behavior of a WO ₃ Electrode under Light-Irradiated or Potential-Controlled Conditions. Journal of Physical Chemistry C, 2009, 113, 10642-10646.	1.5	26
84	Optical properties of single crystalline copper iodide with native defects: Experimental and density functional theoretical investigation. Journal of Applied Physics, 2019, 125, .	1.1	26
85	<i>In situ</i> FTIR study of CO ₂ reduction on inorganic analogues of carbon monoxide dehydrogenase. Chemical Communications, 2021, 57, 3267-3270.	2.2	26
86	Long-term, stable, and improved oxygen-reduction performance of titania-supported PtPb nanoparticles. Catalysis Science and Technology, 2014, 4, 1436-1445.	2.1	25
87	A facile one-pot synthesis of Cu–Cu ₂ O concave cube hybrid architectures. CrystEngComm, 2014, 16, 4967-4972.	1.3	25
88	Photocatalytic decomposition of various organic compounds over WO3-supported ordered intermetallic PtPb co-catalysts. Applied Catalysis B: Environmental, 2016, 181, 475-480.	10.8	24
89	Amorphous Fe2O3 nanoparticles embedded into hypercrosslinked porous polymeric matrix for designing an easily separable and recyclable photocatalytic system. Applied Surface Science, 2019, 466, 837-846.	3.1	24
90	Photocatalytic dry reforming of methane by rhodium supported monoclinic TiO2-B nanobelts. Journal of Energy Chemistry, 2022, 71, 562-571.	7.1	23

#	Article	IF	CITATIONS
91	Direct Observation of Interfacial Charge Transfer between Rutile TiO ₂ and Ultrathin CuO _x Film by Visibleâ€Light Illumination and Its Application for Efficient Photocatalysis. ChemCatChem, 2018, 10, 3666-3670.	1.8	22
92	Improvement of thermal stability of via resistance in dual damascene copper interconnection. , 0, , .		21
93	Highly hydrophilic conversion on oriented TiO2 thin films synthesized by a facile spin-coating method. Applied Physics Letters, 2007, 91, .	1.5	21
94	Visible-Light-Driven Superhydrophilicity by Interfacial Charge Transfer between Metal Ions and Metal Oxide Nanostructures. Langmuir, 2010, 26, 796-801.	1.6	21
95	Crystalline boron monosulfide nanosheets with tunable bandgaps. Journal of Materials Chemistry A, 2021, 9, 24631-24640.	5.2	21
96	Light-promoted conversion of greenhouse gases over plasmonic metal–carbide nanocomposite catalysts. Materials Chemistry Frontiers, 2018, 2, 580-584.	3.2	20
97	Photo-assisted Dry Reforming of Methane over Strontium Titanate. Chemistry Letters, 2018, 47, 935-937.	0.7	19
98	Synergistic photothermal and photochemical partial oxidation of methane over noble metals incorporated in mesoporous silica. Chemical Communications, 2019, 55, 13765-13768.	2.2	19
99	Active faceted nanoporous ruthenium for electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 19788-19792.	5.2	19
100	Hydrothermal Syntheses of Lead Zirconate Titanate Thin Films Fabricated by a Continuous-Supply Autoclave. Japanese Journal of Applied Physics, 1995, 34, 5216-5219.	0.8	17
101	Site-selective deposition of binary Pt–Pb alloy nanoparticles on TiO2 nanorod for acetic acid oxidative decomposition. Journal of Catalysis, 2016, 340, 276-286.	3.1	17
102	Electrocatalytic conversion of carbon dioxide to formic acid over nanosized Cu ₆ Sn ₅ intermetallic compounds with a SnO ₂ shell layer. Catalysis Science and Technology, 2019, 9, 6577-6584.	2.1	17
103	Metal Carbide as A Lightâ€Harvesting and Anticoking Catalysis Support for Dry Reforming of Methane. Global Challenges, 2020, 4, 1900067.	1.8	17
104	Acid Assisted Synthesis of HB Sheets through Exfoliation of MgB ₂ Bulk in Organic Media. Chemistry Letters, 2020, 49, 1194-1196.	0.7	17
105	Interaction between Montmorillonite and Chemical Admixture. Journal of Advanced Concrete Technology, 2015, 13, 325-331.	0.8	16
106	Vertically aligned hexagonal WO3 nanotree electrode for photoelectrochemical water oxidation. Chemical Physics Letters, 2015, 635, 306-311.	1.2	16
107	Interactions between fluoride ions and cement paste containing superplasticizer. Cement and Concrete Research, 2017, 91, 33-38.	4.6	16
108	Hydrogen Boride Sheets as Reductants and the Formation of Nanocomposites with Metal Nanoparticles. Chemistry Letters, 2020, 49, 789-793.	0.7	16

#	Article	IF	CITATIONS
109	Visible-light-driven photocatalysis via reductant-to-band charge transfer in Cr(III) nanocluster-loaded SrTiO3 system. Applied Catalysis B: Environmental, 2020, 270, 118883.	10.8	16
110	A Reliability Study of Barrier-Metal-Clad Copper Interconnects With Self-Aligned Metallic Caps. IEEE Transactions on Electron Devices, 2004, 51, 2129-2135.	1.6	15
111	Tailoring of SnS quantum dots in mesoporous media for efficient photoelectrochemical device. Chemical Physics Letters, 2011, 514, 151-155.	1.2	15
112	Synthesis of Single Phase Sn ₃ O ₄ : Native Visible-Light-Sensitive Photocatalyst with High Photocatalytic Performance for Hydrogen Evolution. Journal of Nanoscience and Nanotechnology, 2017, 17, 3454-3459.	0.9	15
113	Photocatalytic Partial Oxidation of Methane on Palladium‣oaded Strontium Tantalate. Solar Rrl, 2019, 3, 1900076.	3.1	15
114	Chemical stability of hydrogen boride nanosheets in water. Communications Materials, 2021, 2, .	2.9	15
115	Examination of interfacial charge transfer in photocatalysis using patterned CuO thin film deposited on TiO ₂ . APL Materials, 2015, 3, 104409.	2.2	14
116	CO2 oxidative coupling of methane using an earth-abundant CaO-based catalyst. Scientific Reports, 2019, 9, 15454.	1.6	14
117	Ti(<scp>iv</scp>) nanoclusters as a promoter on semiconductor photocatalysts for the oxidation of organic compounds. Journal of Materials Chemistry A, 2016, 4, 1784-1791.	5.2	13
118	Growth of Large Single Crystals of Copper Iodide by a Temperature Difference Method Using Feed Crystal Under Ambient Pressure. Crystal Growth and Design, 2018, 18, 6748-6756.	1.4	12
119	Effects of MoO modification on photocatalytic activity of hydroxyapatite and Ti-doped hydroxyapatite. Advanced Powder Technology, 2019, 30, 1617-1624.	2.0	12
120	Photocatalytic Methane Reforming: Recent Advances. Catalysts, 2021, 11, 18.	1.6	12
121	Tungstate nanosheet ink as a photonless and electroless chromic device. Journal of Materials Chemistry C, 2014, 2, 3732-3737.	2.7	11
122	Visible-Light-Induced CO ₂ Reduction by Mixed-Valence Tin Oxide. ACS Applied Energy Materials, 2021, 4, 13415-13419.	2.5	11
123	Electroless galvanic inks on inorganic WO3/Al boards. Chemical Communications, 2011, 47, 8596.	2.2	10
124	Visible-Light-Active Photoelectrochemical Z-Scheme System Based on Top 5 Clarke-Number Elements. ACS Applied Energy Materials, 2018, 1, 5954-5959.	2.5	10
125	Pore size dependence of self-assembled type photonic crystal on dye-sensitized solar cells efficiency utilising Chlorine e6. Journal of Porous Materials, 2014, 21, 165-176.	1.3	9
126	Ubiquitous quantum dot-sensitized nanoporous film for hydrogen production under visible-light irradiation. Materials Chemistry and Physics, 2015, 160, 383-388.	2.0	9

#	Article	IF	CITATIONS
127	Nanoporous Nickel Composite Catalyst for the Dry Reforming of Methane. ACS Omega, 2018, 3, 16651-16657.	1.6	9
128	Recent Research Trends in Point Defects in Copper Iodide Semiconductors. Journal of Electronic Materials, 2020, 49, 907-909.	1.0	9
129	Multi-Regression Analysis of CO ₂ Electroreduction Activities on Metal Sulfides. Journal of Physical Chemistry C, 2022, 126, 2772-2779.	1.5	9
130	Charge partitioning by intertwined metal-oxide nano-architectural networks for the photocatalytic dry reforming of methane. Chem Catalysis, 2022, 2, 321-329.	2.9	9
131	Photocatalytic Activity of Cu2+-Grafted Metal-Doped ZnO Photocatalysts Under Visible-Light Irradiation. Electrochemistry, 2011, 79, 842-844.	0.6	8
132	Visible light induced decomposition of organic compounds on WO3 loaded PtPb co-catalysts. Catalysis Communications, 2014, 56, 96-100.	1.6	8
133	Effect of Addition of Surfactant to the Surface Hydrophilicity and Photocatalytic Activity of Immobilized Nano-TiO ₂ Thin Films. Journal of Chemical Engineering of Japan, 2015, 48, 856-861.	0.3	8
134	Repeatable Photoinduced Insulator-to-Metal Transition in Yttrium Oxyhydride Epitaxial Thin Films. Chemistry of Materials, 2022, 34, 3616-3623.	3.2	8
135	Effective method for analysis of the rate of hydration of Portland cement based on size distribution. Journal of the Ceramic Society of Japan, 2014, 122, 93-95.	0.5	7
136	Copper Sulfide Catalyzed Porous Fluorine-Doped Tin Oxide Counter Electrode for Quantum Dot-Sensitized Solar Cells with High Fill Factor. International Journal of Photoenergy, 2017, 2017, 1-9.	1.4	7
137	Green light active photocatalyst for complete oxidation of organic molecules. Chemical Communications, 2020, 56, 9210-9213.	2.2	7
138	Gasâ€Phase Photoelectrocatalysis Mediated by Oxygen Ions for Uphill Conversion of Greenhouse Gases. ChemPhotoChem, 2021, 5, 275-281.	1.5	7
139	Active site separation of photocatalytic steam reforming of methane using a gas-phase photoelectrochemical system. Chemical Communications, 2021, 57, 8007-8010.	2.2	7
140	Fabrication of Hydrogen Boride Thin Film by Ion Exchange in MgB2. Molecules, 2021, 26, 6212.	1.7	7
141	UV-induced surface electrical conductivity jump of polymer nanocomposites. Applied Physics Letters, 2008, 92, 203113.	1.5	6
142	Hydration of blended cement with high alite content. Journal of the Ceramic Society of Japan, 2014, 122, 1004-1009.	0.5	6
143	Kelvin probe imaging of photo-injected electrons in metal oxide nanosheets from metal sulfide quantum dots under remote photochromic coloration. Nanoscale, 2015, 7, 12510-12515.	2.8	6
144	BIAN-Fluorene Copolymer Bearing Ruthenium Pendant as Sensitizer of Titanium Nanotubes for Photocatalytic Hydrogen Evolution. Journal of the Electrochemical Society, 2018, 165, J3166-J3172.	1.3	6

#	Article	IF	CITATIONS
145	Direct imaging of visible-light-induced one-step charge separation at the chromium(<scp>iii</scp>) oxide–strontium titanate interface. Journal of Materials Chemistry A, 2022, 10, 752-761.	5.2	6
146	Mullite membrane coatings: antibacterial activities of nanosized TiO2 and Cu-grafted TiO2 in the presence of visible light illumination. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	5
147	Synthesis and Applications of Titanium Oxide Nanotube Thin Films. Topics in Applied Physics, 2010, , 45-57.	0.4	4
148	Photocatalytic Activity of Pt3Ti/WO3 Photocatalyst under Visible-Light Irradiation. ECS Transactions, 2014, 61, 17-22.	0.3	3
149	Working Mechanism of Superplasticizer in Cement Paste with Fluoride Ion. Journal of Advanced Concrete Technology, 2015, 13, 305-310.	0.8	3
150	Decomposition of 2-naphthol in water and antibacterial property by NiO and CeO <i>_x</i> modified TiO ₂ in the dark or under visible light. Journal of the Ceramic Society of Japan, 2019, 127, 688-695.	0.5	3
151	Synthesis of CaFe ₂ O ₄ Nanorod Thin Film Using Molten Salt Method and Analysis of Its Photoelectrochemical Properties. Chemistry Letters, 2020, 49, 1462-1464.	0.7	3
152	Action Mechanism of Superplasticizer in Consideration of Early Hydration of Cement. Journal of Advanced Concrete Technology, 2015, 13, 373-378.	0.8	2
153	Intertwined Nickel and Magnesium Oxide Rival Precious Metals for Catalytic Reforming of Greenhouse Gases. Advanced Sustainable Systems, 2020, 4, 2000041.	2.7	2
154	Photocatalyst coated capillary increases efficiency of membrane penetration process of microinjection. , 0, , .		1
155	Relationship between Fluidity of Cement Paste with Fluoride Ion and Type of Superplasticizer. Journal of Advanced Concrete Technology, 2018, 16, 577-586.	0.8	1
156	NiYAl-Derived Nanoporous Catalysts for Dry Reforming of Methane. Materials, 2020, 13, 2044.	1.3	1
157	STUDY ON CEMENT RECYCLING SYSTEM USING SODIUM GLUCONATE. Cement Science and Concrete Technology, 2012, 66, 22-27.	0.1	1
158	Photocatalysis under thermally shifted bandgap. Applied Catalysis A: General, 2022, 643, 118772.	2.2	1
159	FLUIDITY OF BLAST FURNACE CEMENT WITH COMB-TYPE SUPERPLASTICIZERS HAVING DIFFERENT MOLECULAR STRUCTURE. Cement Science and Concrete Technology, 2012, 66, 28-33.	0.1	Ο
160	INFLUENCE OF SODIUM GLUCONATE ON THE HYDRATION OF CEMENT IN SLUDGE WATER. Cement Science and Concrete Technology, 2014, 68, 16-21.	0.1	0
161	Method for Estimating Quantity of Non-Hydrated Cement in a Cement Recycling System. Journal of Advanced Concrete Technology, 2015, 13, 44-49.	0.8	0
162	Crystal Structure-mediated Difference in Spectroscopic Behavior of OER Intermediate on MnO ₂ in the Presence of Pyridine. Chemistry Letters, 2020, 49, 481-484.	0.7	0

#	Article	IF	CITATIONS
163	ACTION MECHANISM OF SUPERPLASTICIZER IN CONSIDERATION OF EARLY HYDRATION OF CEMENT. Cement Science and Concrete Technology, 2014, 68, 75-81.	0.1	0
164	Hydrogen Generation Induced by Ultraviolet Light Irradiation on Hydrogen Boride Sheets. Vacuum and Surface Science, 2020, 63, 352-357.	0.0	0